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Image Sensor Noise Parameter Estimation by
Variance Stabilization and Normality Assessment

Stanislav Pyatykh* and Jürgen Hesser

Abstract—High-quality image denoising requires taking into
account the dependence of the noise distribution on the original
image. The parameters of this dependence are often unknown
and we propose a new method to estimate them here. Using an
optimization procedure, we find a variance-stabilizing transfor-
mation, which transforms the input image into an image with
signal-independent noise. Principal component analysis of blocks
of the transformed image allows estimation of the variance of the
signal-independent noise so that the parameters of the original
noise model can be computed. The image blocks for processing
are selected in such a way that they have low stochastic texture
strength but preserve the noise distribution. The algorithm does
not require the original image to have homogeneous areas and
can accurately process images with regular textures. It has high
computational efficiency and smaller maximum estimation error
compared with the state of the art. Our experiments have also
shown that denoising with the noise parameters estimated by this
method leads to the same results as denoising with the true noise
parameters.

Index Terms—Estimation, image processing, principal compo-
nent analysis.

EDICS Category: SMR-SMD

I. INTRODUCTION

Many image denoising algorithms [1], [2], [3] take the
noise parameters as input values. However, these parameters
may not be known beforehand because they may depend on
sensor’s operational conditions or the calibration data may not
be available. As a result, blind noise parameter estimation is
often necessary. Its accuracy heavily affects the performance
of denoising algorithms, since some noise remains in the
output image when the noise level is underestimated, whereas
overestimating the noise level results in oversmoothing the
output image.

Signal-independent additive white Gaussian noise (AWGN)
is the most widely used noise model. It is easy to analyze
and has only one parameter: the noise variance. However,
this model does not accurately describe the behavior of digital
image sensors. Due to improvements in the sensor technology,
the effect of signal-independent electric and thermal noise
is decreasing [4], and photon noise is becoming the main
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component of sensor noise. Therefore, sensor noise should be
considered as signal-dependent.

Compared with the large literature on signal-independent
noise level estimation (see [5], [6], [7], [8] and references
therein), there are not so many methods for sensor noise
parameter estimation; and these methods include the following
steps [9], [10], [11], [12], [4], [13], [14], [15], [16], [17], [18]:

1) Detection of homogeneous areas, for which the original
intensity is approximately constant. Edges and regions
covered by texture are detected and excluded from the
further processing.

2) Computation of estimates of the mean and variance
for each homogeneous area or for a group of homo-
geneous areas. Since the original image is considered as
constant in each homogeneous area, the noise variance
can be estimated as the variance of the input image
intensities. Wavelet decomposition [4] or block discrete
cosine transform [18] can be used here in order to
remove possible image structures and get more accurate
estimates.

3) Fitting the noise model to the mean and variance esti-
mates. Various methods of cluster center determination
and least squares fitting are utilized here.

These steps can be graphically represented as the construction
of the scatter-plot for the mean and variance estimates, hence
they are often referred to as the scatter-plot approach.

All mentioned methods require a sufficient amount of homo-
geneous areas in the original image. These areas should have
various intensities so that the noise variance as a function of
the original pixel value can be accurately estimated. Therefore,
images containing mostly textures are not always accurately
processed.

In this work, we propose a new parameter estimation
method for digital image sensor noise, which is based on
principal component analysis (PCA) of image blocks. The
advantages of the proposed method are the following:

1) The method has smaller maximum estimation error
compared with the state of the art. At the same time,
it has high computational efficiency.

2) Images without homogeneous areas can be processed.
To the best of our knowledge, this is the first algorithm
designed for digital image sensor noise, which does not
require the existence of homogeneous areas.

The idea of the proposed method is to apply a variance-
stabilizing transformation (VST) in order to transform the
noise to AWGN, and then to estimate the noise variance as
the variance of the last principal component of image blocks.
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However, the VST depends on the noise parameters, which
are unknown, therefore, a noise normality measure is utilized
to select the right VST.

This article is organized as follows. We start with a brief
description of digital image sensor noise model in Section II.
The construction of a VST is described in Section III; and
the algorithm is explained in Section IV. The results and the
discussion are represented in Sections V and VI respectively.
We conclude in Section VII.

II. NOISE MODEL

Further in this work, the expected value, the standard
deviation, and the variance of a random variable are denoted
by E(·), std(·), and var(·) respectively; and s2(·) denotes the
sample variance. The entry in the i-th row and j-th column
of a matrix A is referred to as A(i, j); and vT denotes the
transpose of a vector v.

Let p ∈ Z2 be a pixel location, x = x(p) be the original
(noise-free and unknown) image, and y = y(p) be the
corresponding noisy image, which is acquired by the sensor.
For a function f of a real variable, f(y) denotes the image
with value f

(
y(p)

)
at position p.

Let ω(p) ∼ Poisson
(
λ(p)

)
be the number of detected

photons,
√
bξ(p) ∼ N (0, b) be signal-independent electric and

thermal noise added to the signal by the sensor’s hardware, and
a > 0 be a multiplicative factor which depends on the sensor’s
quantum efficiency and the analog gain [4]. Then,

x(p) = aλ(p) (1)

y(p) = aω(p) +
√
bξ(p). (2)

Since ξ is signal-independent,

var
(
y(p)

)
= a2λ(p) + b

(1)
= ax(p) + b. (3)

Therefore, the noise variance linearly depends on the original
pixel value.

For sufficiently large λ(p), ω(p) can be approximated by
a normal random variable with mean λ(p) and variance λ(p)
[4]. In this case, from (1) and (2), y(p) is approximately
normally distributed with mean x(p) and variance ax(p)+ b.
Hence the sensor noise can be approximated by additive
Gaussian noise with signal-dependent variance:

y(p) ≈ x(p) +
√
ax(p) + b ξ(p). (4)

The image sensor noise parameter estimation problem is
then the problem of estimation parameters a and b given noisy
image y, which is assumed to follow model (2).

III. VARIANCE-STABILIZING TRANSFORMATION

A VST of random variable y(p), whose standard deviation
depends on x(p), is function f( · ; a, b) such that the standard
deviation of transformed random variable f

(
y(p); a, b

)
is

independent of x(p), i.e.

std
(
f
(
y(p); a, b

))
= σ (5)

where σ is independent of x(p).

Using the first-order Taylor expansion of f around the mean
value

f
(
y(p); a, b

)
≈ f

(
x(p); a, b

)
+ f ′

(
x(p); a, b

)(
y(p)− x(p)

)
(6)

(5) can be approximated as

f ′
(
x(p); a, b

)
· std

(
y(p)

)
= σ (7)

or
f ′
(
x(p); a, b

)
=

σ

std
(
y(p)

) =
σ√

ax(p) + b
(8)

Integrating the last equality, we have

f(t; a, b) =
2σ

a

√
at+ b. (9)

The VST (9) is a smooth function and y(p) is approxi-
mately normally distributed; hence, if y(p) has a sufficiently
small variance, the transformed pixel intensity f

(
y(p); a, b

)
is approximately normally distributed as well. Additionally,
std
(
f
(
y(p); a, b

))
≈ σ for all p. Therefore, the transformed

pixel intensities f
(
y(p); a, b

)
can be considered as indepen-

dent identically distributed random variables drawn from a
normal distribution with variance σ2, i.e. the noise in the
transformed image f(y; a, b) can be approximated by AWGN.

In order to validate this conclusion, we utilized Q–Q plots
[19]. A Q–Q plot can be used to assess normality of the
noise by making a plot of the noise distribution against
the normal distribution with the same mean and variance.
Denoting the cumulative distribution functions (CDFs) of the
noise distribution and the normal distribution by F̂ and F
respectively, the Q–Q plot can be constructed as the parametric
curve (

F−1(t), F̂−1(t)
)

t ∈ [0, 1]. (10)

The closer this curve lies to the 45◦ line, the closer the noise
distribution is to the normal distribution.

In order to construct the Q–Q plots for images y and
f(y; a, b), we took a 2048 × 2048 image, whose grayvalues
were uniformly distributed in the range 0, . . . , 4095, as the
original image x. (The range 0, . . . , 4095 corresponds to the
grayvalue range of a 12-bit sensor.) Then, the noisy image
y was generated according to Poisson-Gaussian model (2);
and the Q–Q plots for the noise distribution in images y and
f(y; a, b) were constructed. For high-quality sensors, the level
b of signal-independent electric and thermal noise remains
low. At the same time, the level a of signal-dependent noise
component depends on the imaging conditions and can be
arbitrary large. Therefore, we fixed b to 25 and varied a from
10 to 400.

The Q–Q plots are presented in Fig. 1. The noise in image y
always has longer tails compared with the normal distribution.
Regarding the noise in image f(y; a, b), it can be approximated
by the normal distribution very well if a is not greater than 20.
For larger a, the tails of the Q–Q plot lie considerably below
the 45◦ line, which indicates that the noise distribution is
skewed to the left. This can be explained by the fact that linear
approximation around x(p) (6) is not sufficiently accurate
if y(p) is far from x(p), i.e. when the variance of y(p) is
large. Nevertheless, we assume further in the paper that the
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transformed image f(y; a, b) has AWGN, which reflects the
behavior for sufficiently small a.

The Matlab code to generate the plots from Fig. 1 is avail-
able at http://physics.medma.uni-heidelberg.de/cms/projects/
132-pcanle.

IV. NOISE PARAMETER ESTIMATION

A. Transform of Image Blocks

Since we assume that the transformed image f(y; a, b)
has AWGN with standard deviation σ, this image can be
considered as the result of corruption of some noise-free image
z with AWGN. In this case, image z is the expected value of
image f(y; a, b):

z = E
(
f(y; a, b)

)
. (11)

Let p1, . . . ,pN be pixel locations; M ∈ {0, 1}B×B be a
B × B binary matrix representing a pixel mask; and K be
the number of non-zero elements in this matrix. By shifting
the top-left corner of matrix M to locations p1, . . . ,pN ,
selecting pixel values below the non-zero elements of this
matrix, and rearranging these values into vectors of size K,
we can construct N vectors from image z and N vectors from
image f(y; a, b). Let us denote these vectors u1, . . . ,uN and
v1, . . . ,vN respectively.

In order to be able to separate the noise from the signal, one
has to assume that the information in image z is redundant,
i.e. the intrinsic dimension of vectors u1, . . . ,uN is smaller
than the number of coordinates K. In order to utilize this
redundancy, a transform, which can represent each of these
vectors with less than K coefficients, should be applied. We
suggest using PCA as transform, because it is data-adaptive
and can separate noise not only in homogeneous areas but also
in regular textures.

PCA is applied to the transformed noisy image f(y; a, b)
corrupted with AWGN with variance σ2 as follows [20]:

1) The mean of vectors v1, . . . ,vN is computed:

v =
1

N

N∑
i=1

vi. (12)

2) The sample covariance matrix of v1, . . . ,vN is con-
structed:

S =
1

N − 1

N∑
i=1

(
vi − v

)(
vi − v

)T
. (13)

3) The normalized eigenvectors a1, . . . ,aK of matrix S are
calculated. These vectors form an orthonormal basis and
obey the relation

s2(aT1 vi) ≥ s2(aT2 vi) ≥ · · · ≥ s2(aTKvi) (14)

where the sample variances s2(·) are computed over i.
4) Scores wk,i, k = 1, . . . ,K, i = 1, . . . , N , are calculated:

wk,i = aTk (vi − v) (15)

i.e. wk,i is the k-th coordinate of the centered vector
(vi − v) in basis a1, . . . ,aK . Let us further denote the
score set wk,1, . . . , wk,N by wk, k = 1, . . . ,K; and the
set of all scores wk,i by w.

Since the distribution of the noise vectors (vi − ui) is multi-
variate Gaussian with the covariance matrix σ2I, we have1:

s2(aT1 vi) ≈ s2(aT1 ui) + σ2

· · ·
s2(aTKvi) ≈ s2(aTKui) + σ2 (16)

where the sample variances are computed over i. We may
remark that variances s2(aTk vi) equal the eigenvalues of the
matrix S.

If PCA can exploit the redundancy of image z, vectors
u1, . . . ,uN are represented only by the first m < K eigen-
vectors a1, . . . ,am and are orthogonal to the last eigenvector
aK . Therefore, scores wK are not affected by the image
content and their distribution equals the noise distribution [8].
This fact provides a way to analyze the noise distribution by
analyzing the distribution of scores wK . In particular, since
s2(aTKui) = 0, the noise variance can be estimated as the
score variance (see (16)):

s2(wK) ≈ σ2. (17)

B. Measurement of the Stochastic Texture Contribution

The original image can contain stochastic textures, which
cannot be distinguished from noise by PCA. Hence it is
necessary to select blocks with the smallest stochastic texture
strength for processing in order to have minimal influence of
the stochastic texture on the result, i.e. all image blocks should
be sorted by the stochastic texture strength.

One way to carry it out is to separate all scores into two
groups: the scores used for noise distribution analysis and the
scores used to measure the texture strength. For example, since
scores wK are utilized for noise distribution analysis, scores
wK′ , . . . , wK−1 can be used to measure the texture strength
for some K ′ < K. However, scores wK′,i, . . . , wK,i are com-
puted from the same vector vi and are statistically dependent.
Therefore, skipping blocks with high texture strength using
scores wK′ , . . . , wK−1 changes the distribution of wK , which
makes this strategy incorrect.

For this reason, we use different pixel masks for noise
distribution analysis and for texture strength measurement. Let
Mtex and Mdist be binary pixel mask matrices of size B×B,
which form complimentary stripe patterns:

Mtex(p, q) =
(
(−1)q + 1

)
/2

Mdist(p, q) = 1−Mtex(p, q) (18)

where p, q = 1, . . . , B. Then, applying the block selection and
PCA as described in Section IV-A for each of masks Mtex and
Mdist, we get two score sets w(tex) and w(dist) respectively.
Scores w(tex) are utilized to measure the stochastic texture
strength, whereas scores w(dist) are used for noise distribution
analysis. For each i, scores w

(tex)
1,i , . . . , w

(tex)
K,i and scores

w
(dist)
1,i , . . . , w

(dist)
K,i are independent, so that skipping blocks

1The equalities are approximate because of the finite number of vectors
N . The variance of the difference between the left and the right side is
inverse proportional to N so that it does not influence the results when N is
sufficiently large.
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Fig. 1. The Q–Q plots for the noise distribution in image y (red curve) and in image f(y; a, b) (blue curve). The PSNR is given in decibels. The black line
is the 45◦ line.

Fig. 2. 6 × 6 pixel masks Mtex (blue) and Mdist (red) overlaid with a
part of the top-left image in Fig. 4. Since the texture properties change only
slightly within the block, the scores w(tex) computed from the blue pixels
are used to estimate the stochastic texture strength in the red pixels.

using scores w(tex) does not influence the distribution of
w

(dist)
K . At the same time, the strength of stochastic texture in

scores w(dist)
K can be estimated using scores w(tex) very well,

because the stochastic texture strength changes gradually and
matrices Mtex and Mdist have the interleaving pattern (see
Fig. 2).

Regular structures, which can be compactly represented
by PCA, are stored in the first several score sets
w

(tex)
1 , . . . , w

(tex)
K′−1, K ′ ≤ K. On the other hand, stochastic

textures cannot be compactly represented and affect all scores
w

(tex)
1 , . . . , w

(tex)
K . Hence we use the last several score sets in

order to sort blocks by the stochastic texture strength. More

specifically, image blocks are sorted by the following measure:

T (w(tex), i) =

K∑
k=K′

(
w

(tex)
k,i

)2
(19)

where K ′ ≤ K is a predefined parameter. T (w(tex), i) con-
tains the contribution of noise as well but, since the noise in
image f(y; a, b) is assumed to be AWGN, this contribution is
approximately the same for all blocks so that it has almost no
influence on the order of sorted blocks.

C. Noise Normality Assessment

Since the true noise parameters are unknown, the VST
parameters used in (9) are selected by the algorithm, and they
can differ from the true noise parameters. In this case, VST
(9) may not stabilize the variance and the noise distribution
may deviate from a normal distribution. Therefore, we measure
the normality of the noise distribution in order to assess the
accuracy of the selected VST parameters.

Specifically, we utilize the excess kurtosis to measure the
noise normality. The excess kurtosis of random variable X is
defined as

γX =
E
((
X −E(X)

)4)
E
((
X −E(X)

)2)2 − 3. (20)

γX is zero when X is normal, i.e. vanishing excess kurtosis
is a necessary condition for the noise normality. Let us now
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show that, for noise model (4), it is also an approximate suf-
ficient condition for the noise normality. Let x1 < · · · < xM
be pixel values in the original image x, and h1, . . . , hM be
their probabilities. Suppose that VST (9) is applied with some
parameters a′ and b′, which are not necessary equal to the
true noise parameters a and b. Using the first-order Taylor
expansion of f around x(p) as in Section III,

std
(
f
(
y(p); a′, b′

))
≈ f ′

(
y(p); a′, b′

)
· std

(
y(p)

)
= σ

√
ax(p) + b√
a′x(p) + b′

. (21)

Let us denote

σ2
i = σ2 axi + b

a′xi + b′
i = 1, . . . ,M. (22)

As follows from (21), the intensity of a pixel, which has value
xi in the original image, has normal distribution with variance
σ2
i in image f(y; a′, b′). Therefore, the noise distribution in

image f(y; a′, b′) can be represented as the mixture of the
normal distributions N (0, σ2

i ) with weights hi. The excess
kurtosis of the noise distribution can be then written as [21,
p. 11]:

γ = 3

∑M
i=1 hiσ

4
i(∑M

i=1 hiσ
2
i

)2 − 3. (23)

As follows from Jensen’s inequality2, the excess kurtosis (23)
is always non-negative, and it equals zero if and only if all
σi are equal to each other, i.e. if parameters a′ and b′ are
proportional to a and b:

a

a′
=

b

b′
. (24)

But in this case, std
(
f
(
y(p); a′, b′

))
(21) is independent of

x(p), i.e. the noise in the transformed image f(y; a′, b′) is
AWGN. As a result, vanishing γ is a necessary and approxi-
mate sufficient condition3 for the noise to be AWGN; and the
deviation of γ from zero can be used to assess the deviation
of the noise from normality.

Speaking of the calculation of the excess kurtosis for finite
samples, the sample excess kurtosis G(Xi) for a sample
X1, . . . , XN is computed by using the sample mean instead
of the expected value in (20). If X1, . . . , XN have a normal
distribution, the sample excess kurtosis multiplied by factor√
N/24 is asymptotically normally distributed [22]:

G(Xi)
√
N/24

D−−−−−→ N (0, 1) (25)

which means that the condition

G(Xi)
√
N/24 < Tγ (26)

for some threshold Tγ > 0 can be utilized to test that γX is
zero provided that γX is always non-negative.

2Jensen’s inequality states that, for a strictly convex function ψ,
ψ
(∑M

i=1 hiti
)
≤
∑M
i=1 hiψ(ti) and equality occurs only for t1 = t2 =

. . . = tM . It can be applied to (23) by substituting ψ(t) = t2 and ti = σ2
i .

3It is only an approximate sufficient condition because it is based on the
first-order Taylor expansion of f .

D. Parameter transform

As follows from the previous section, the VST parameters
can be found by minimizing the excess kurtosis of the noise
distribution. In order to make the minimization efficient, the
noise parameters (a, b) are transformed into parameters (σ, φ)
in such a way that

1) The noise in image f
(
y; a(σ, φ), b(σ, φ)

)
is AWGN only

for one value of φ, i.e. the objective function has a single
global minimum.

2) Parameter φ has a bounded domain. This allows appli-
cation of efficient numerical minimization methods.

Let us consider the polar coordinates:

a = σ2 cosφ
b = σ2 sinφ

σ > 0, φ ∈
(
0, π/2

)
. (27)

Then, for

a′ = (σ′)2 cosφ′

b′ = (σ′)2 sinφ′
σ′ > 0, φ′ ∈

(
0, π/2

)
(28)

we have that

(24)⇔ cosφ

cosφ′
=

sinφ

sinφ′

⇔ sin(φ′ − φ) = 0

⇔ φ′ = φ. (29)

Therefore, the noise in image f(y;σ2 cosφ, σ2 sinφ) is
AWGN only for a single value of φ; and, as the domain of
φ is bounded, the transform to polar coordinates is a suitable
parameter transform according to the conditions above.

Substituting the polar coordinates into VST (9), we have
that the VST is independent of σ, so we denote it further as
function g( · ;φ):

f(t;σ2 cosφ, σ2 sinφ) =
2σ

σ2 cosφ

√
tσ2 cosφ+ σ2 sinφ

=
2

cosφ

√
t cosφ+ sinφ

def
= g(t;φ). (30)

E. Algorithm

Our noise parameter estimation method is presented in
Algorithm 1. The set {pi}Ni=1 denotes the set of all possible
overlapping block positions. The score sets are presented as
functions of the image and the block position set, i.e. notation
w

(dist)
k (g(y;φ), P ) means that scores w

(dist)
k are computed

from image g(y;φ) using block position set P .
The noise parameters should be estimated from those

blocks, which do not contain stochastic textures. On the other
hand, we need the noise parameters in order to compute the
stochastic texture strength in each block. Therefore, we apply
an iterative procedure, in which noise parameter estimation
and the computation of the stochastic texture strength are inter-
leaved. The algorithm starts with φ0 = 0, which corresponds to
pure Poisson noise; and a new estimate (σn, φn) is computed
at each iteration of the outer loop (lines 3–21). The outer loop
stops when convergence is reached, namely, when φn equals
one of the previous estimates of φ with tolerance 10−3. During
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our experiments with real images, at most 9 iterations were
required for convergence.

Output estimates aest and best are updated in lines 4–5
according to (27). In lines 6–7, the stochastic texture strength
for all blocks is computed as described in Section IV-B. In line
7, the blocks are sorted in ascending order by the stochastic
texture strength; and the permutation containing the new order
of the blocks is stored in τ . Then, N ′ blocks with the smallest
stochastic texture strength are selected in line 11.

In line 12, noise parameter φ∗ and corresponding excess
kurtosis G∗ are found by minimization of the excess kurtosis
of w(dist)

K . The minimization is done by the golden section
search in the interval (0, π/2). An example of the objective
function plot is shown in Fig. 3. As one can see, the function
is unimodal, so that the golden section search is guaranteed
to find the global minimum.

In line 13, we test if the noise in the image g(y;φ∗) is
AWGN by checking condition (26) for G∗. If (26) holds, we
estimate the noise variance according to (17) in line 15. The
same is done when N = N ′ in order to guarantee that φn and
σn are valid. If (26) does not hold, we break the loop (line
17), because if texture and noise separation is not possible for
the current block set, it will be also impossible for a larger
block set.

Algorithm 1
Input: image y
Output: noise parameter estimates (aest, best)

1: n← 0
2: (σ0, φ0)← (0, 0)
3: while n < 2 or |φn − φk| > 10−3, k = 1, . . . , n− 1 do
4: aest = σ2

n cosφn
5: best = σ2

n sinφn
6: w(tex) ← w(tex)

(
g(y;φn), {pi}Ni=1

)
7: τ ← Sort

(
T (w(tex), 1), . . . , T (w(tex), N)

)
8: n← n+ 1
9: N ′ ← Nmin

10: while N ′ ≤ N do
11: P ← {pτ(i)}N

′

i=1

12: φ∗, G∗ ← minφG
(
w

(dist)
K (g(y;φ), P )

)
13: if G∗

√
N ′/24 < Tγ or N ′ = Nmin then

14: φn ← φ∗

15: σ2
n ← s2

(
w

(dist)
K (g(y;φ∗), P )

)
16: else
17: break
18: end if
19: N ′ ← N ′ +Nstep
20: end while
21: end while

The suggested values of the algorithm parameters B, Tγ ,
Nmin, Nstep, K ′ are listed in Table I. Vector dimension K is
not a free parameter and equals (B × B)/2, because each of
masks Mtex and Mdist contains a half of pixels of a B ×B
block. Block size B should be as large as the textural pattern in
order to find correlations between pixels of the image texture
and separate it from the noise. On the contrary, s2

(
w

(dist)
K

)
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Fig. 3. Normalized excess kurtosis G
(
w

(dist)
K (g(y;φ), P )

)√
N ′/24 for

the bottom-right image in Fig. 4 at the first iteration of the outer loop. The
number of blocks N ′ equals 30000. The minimum is achieved at φ = 1.550.
The true value of φ is 1.544.

Fig. 4. Images from the NED2012 database.

has a negative bias, which increases with K, because scores
w

(dist)
K have the smallest sample variance by construction of

PCA. Therefore, the block size should be kept small. We
have found B = 6 to be a good compromise. Threshold
Tγ equals to three standard deviations of the normalized
sample excess kurtosis (25). Parameter Nmin corresponds
to the minimal number of blocks, for which the results are
statistically significant. Score set index K ′ should be small
enough to make the sum (19) contain a sufficient number of
items and be stable to noise. At the same time, the first several
score sets w(tex)

k , which contain the most of the image content,
should not be considered. K ′ = 4 provides a good trade-off.

The Matlab and C++ implementations of the algorithm
are available at http://physics.medma.uni-heidelberg.de/cms/
projects/132-pcanle.
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TABLE I
ALGORITHM PARAMETERS

Parameter Denotation Value
Block size B 6

Excess kurtosis threshold in (26) Tγ 3
Minimum block count Nmin 5000

Block count step Nstep 25000
Starting index in (19) K′ 4

V. EXPERIMENTS

A. Measurement of the Estimation Accuracy

Further in the experiment descriptions, let us denote the true
noise parameters by a and b, and their estimates by aest and
best.

The relative errors of aest and best do not always provide
a good measure of the accuracy, because the estimation errors
for a and b can compensate each other. For example, for
constant image x(p) = x0, all estimates satisfying the equality

aestx0 + best = ax0 + b (31)

are accurate.
For this reason, we define seminorm ρx of the standard

deviation function h(t; a, b) =
√
at+ b:

ρx
(
h(·; a, b)

)
=

√∑
p

h2(x(p); a, b). (32)

This seminorm puts more weight to the grayvalues which
occur often in image x. Then, we compute the estimation error
using the following relation of seminorms, which mimics the
relative error:

δ =
ρx
(
h(·; aest, best)− h(·; a, b)

)
ρx
(
h(·; a, b)

)
=

(∑
p

(√
aestx(p) + best −

√
ax(p) + b

)2∑
p

(
ax(p) + b

) )1/2

. (33)

Since original images x are not available for real noisy
images, the images produced by the denoising algorithm [3]
with the true noise parameters were used instead of x to
compute δ. Note that δ is insensitive to this substitution due
to the summation over all pixels in (33).

B. Experiments with NED2012

In order to test our method on real noisy images, we utilized
the NED2012 image database [18], [23]. The database contains
25 real-world RGB images of size 1950× 1305 formed from
the raw data of a CCD camera. Some of the images are shown
in Fig. 4. As one can see, there are images almost completely
covered by textures, so the database is challenging for noise
parameter estimation algorithms. The database also contains
the true noise parameters for each color channel obtained by
a calibration procedure (see Table II).

The proposed algorithm has been compared with methods
[4] and [18]. The average and maximum values of δ over
all images are presented in Table III. The average error of
the proposed method is comparable to that of [18]. At the

TABLE II
THE TRUE NOISE PARAMETERS FOR NED2012.

Channel a b
R 0.1460 7.6876
G 0.1352 5.0834
B 0.1709 12.3381

TABLE III
THE ESTIMATION ERRORS FOR NED2012. THE SMALLEST ERROR FOR

EACH CHANNEL IS SELECTED WITH THE BOLD FONT.

Channel Average δ Maximal δ
[4] [18] proposed [4] [18] proposed

R 0.592 0.023 0.025 7.746 0.076 0.073
G 0.651 0.041 0.035 5.952 0.214 0.096
B 0.337 0.056 0.054 3.769 0.146 0.095

same time, the maximum error of our algorithm is significantly
smaller than that of [18] for the green and blue channels.

For the single-threaded C++ implementation of the proposed
method, the average time to process one 1950 × 1305 image
was 37 seconds on a PC with CPU Intel i7 920 2.67 GHz and
6 GB RAM.

C. Experiments with synthetic noise

In order to examine the behavior of our algorithm on a wider
range of noise levels, we made noise parameter estimation and
denoising experiments with images corrupted with synthetic
noise. The standard test images shown in Fig. 5 were used
as the original images, and the noisy images were generated
according to the Poisson-Gaussian model (2). The original
images were rescaled to the 12-bit range 0, . . . , 4095 in order
to keep the noise parameters in the same scale as in the
NED2012 database. As in the Section III, the level b of
signal-independent noise was fixed to 25; and the level a
of signal-dependent noise was varied from 10 to 400. This
corresponds to varying the peak signal-to-noise ratio (PSNR)
approximately in the range from 29 dB to 13 dB. Denoising
was performed using the algorithm [3], which represents the
state of the art in signal-dependent noise removal.

As shown in Table IV, the estimation error δ remains small
in the whole range of parameter a. That means, the estimator
is insensitive to the negative skewness of the noise distribution
in image f(y; a, b), which takes place for large a (see Fig. 1).

Table V presents the results of denoising with the true and
estimated noise parameters. As one can see, the denoised im-
age PSNR for the estimated noise parameters is approximately
the same as that for the true ones. That means the estimation
error does not make the denoising results worse.

VI. DISCUSSION

A. Choice of the Algorithm Components

Since our approach is based on the VST, its idea is inde-
pendent of the noise model. In this paper, we demonstrate
the applicability of this approach for digital image sensor
noise, which is characterized by variance (3) and VST (9).
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Fig. 5. 512× 512 test images: ”Barbara”, ”Couple”, ”Fingerprint”, ”Hill’,
”Mandrill”, and ”Pirate”.

TABLE IV
THE ESTIMATION ERROR δ FOR SYNTHETIC NOISE.

Image a
10 20 50 100 200 400

Barbara 0.028 0.024 0.015 0.013 0.015 0.035
Couple 0.072 0.048 0.024 0.025 0.033 0.046

Fingerprint 0.065 0.039 0.023 0.018 0.022 0.026
Hill 0.054 0.040 0.021 0.016 0.021 0.034

Mandrill 0.012 0.015 0.008 0.013 0.019 0.028
Pirate 0.028 0.023 0.019 0.017 0.018 0.027

TABLE V
THE DENOISING RESULTS. TOP ROW: THE NOISY IMAGE PSNR. MIDDLE
ROW: THE DENOISED IMAGE PSNR FOR THE TRUE NOISE PARAMETERS.
BOTTOM ROW: THE DENOISED IMAGE PSNR FOR THE ESTIMATED NOISE

PARAMETERS. THE PSNR IS GIVEN IN DECIBELS.

Image a
10 20 50 100 200 400

Barbara
29.48 26.48 22.50 19.49 16.48 13.48
35.61 33.99 31.87 30.20 28.42 26.21
35.64 34.00 31.88 30.22 28.47 26.59

Couple
29.36 26.35 22.37 19.36 16.35 13.34
34.87 33.22 31.10 29.48 27.85 25.97
34.78 33.18 31.08 29.46 27.84 26.15

Fingerprint
28.67 25.66 21.69 18.68 15.67 12.66
32.94 31.09 28.76 27.07 25.42 23.69
33.03 31.12 28.75 27.06 25.43 23.82

Hill
29.69 26.67 22.70 19.68 16.68 13.67
34.70 33.08 31.13 29.71 28.30 26.54
34.57 32.98 31.09 29.69 28.31 26.83

Mandrill
29.10 26.08 22.12 19.10 16.10 13.08
33.98 31.93 29.31 27.40 25.61 23.95
33.98 31.91 29.30 27.39 25.58 24.01

Pirate
29.70 26.70 22.72 19.70 16.70 13.69
34.89 33.08 30.86 29.36 27.92 26.22
34.85 33.04 30.82 29.34 27.93 26.52

Nevertheless, other signal-dependent noise models can be
handled in the same way as well.

Regarding the transform of image blocks, PCA is utilized in
this work, because it is data-adaptive and can separate noise
not only in homogeneous areas but also in regular textures.
However, some other orthogonal transform, which is able to
separate signal and noise, e.g. the discrete cosine transform,
can by applied as well. In this case, wki are the transform
coefficients and they can be used in the other parts of the
algorithm without changes.

Speaking of the noise normality assessment, it can be
carried out by measuring the difference between the noise CDF
and the normal CDF, or by measuring the difference between
the standardized moments of the noise and the moments of
the standard normal distribution.

The difference between the noise CDF and the normal CDF,
which is the basis of the Lilliefors test [24], the Anderson-
Darling test [25], and the Cramér-von Mises criterion [26], is
very sensitive to outliers and local deviations from normality.
For this reason, when it is used as the objective function
instead of the excess kurtosis, it often misleads the selection
of φ and results in a relatively low accuracy of the noise
parameter estimates. Moreover, sensitivity to local deviations
from normality is not required, since only the variance is
utilized to compute σ2

n (see line 15 of Algorithm 1).
The standardized moments of the noise are relatively in-

sensitive to outliers and provide a suitable way for normality
assessment. Since the first two moments, which correspond to
the mean and the variance, are free parameters of a normal
distribution, the 3rd, the 4th, and high-order moments can be
utilized here. As shown in Section IV-C, the 4th standardized
moment, which corresponds to the excess kurtosis, is an
efficient solution.

B. Comparison with the State of the Art
Compared with the scatter-plot approach, which is the state

of the art in signal-dependent noise parameter estimation, the
proposed method utilizes a different assumption about the
original image. Instead of looking for homogeneous areas, it
selects a block subset, whose intrinsic dimension is smaller
than the number of block pixels. This allows efficient pro-
cessing of highly textured images.

Compared with the PCA-based method [8], which is de-
signed for AWGN variance estimation, the proposed method
utilizes a more sophisticated block selection procedure. The
block selection method in [8] cuts the tails of the noise
distribution so that it cannot be applied in the presented
algorithm, which is based on the noise normality assessment.
On the contrary, the proposed block selection approach pre-
serves the noise distribution properties. Moreover, it considers
only stochastic textures and is insensitive to image structures.
Additionally, the noise excess kurtosis is studied in order to
measure the noise normality, since the proposed approach is
designed for signal-dependent noise.

VII. CONCLUSION

In this work, we propose a new image sensor noise param-
eter estimation algorithm. It is qualitatively different from the
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state of the art scatter-plot method and allows processing of
images without homogeneous areas.

According to our noise parameter estimation experiments,
the average error of the proposed algorithm is comparable with
the state of the art. However, the maximum error is smaller
than that of the existing approaches, which demonstrates a
higher robustness of our method.

The denoising experiments show that the proposed noise
parameter estimator can be utilized together with the state of
the art denoising methods, leading to the same results as noise
removal with the true noise parameters.
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