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Image Noise Level Estimation by Principal
Component Analysis

Stanislav Pyatykh*, Jürgen Hesser, and Lei Zheng

Abstract—The problem of blind noise level estimation arises
in many image processing applications, such as denoising, com-
pression, and segmentation. In this article, we propose a new
noise level estimation method based on principal component
analysis of image blocks. We show that the noise variance can
be estimated as the smallest eigenvalue of the image block
covariance matrix. Compared with 13 existing methods, the
proposed approach shows a good compromise between speed
and accuracy. It is at least 15 times faster compared with the
methods with similar accuracy; and it is at least 2 times more
accurate than other methods. Our method does not assume the
existence of homogeneous areas in the input image, hence it can
successfully process images containing only textures.

Index Terms—Additive white noise, estimation, image process-
ing, principal component analysis.

EDICS Category: SMR-REP

I. INTRODUCTION

Blind noise level estimation is an important image process-
ing step, since the noise level is not always known beforehand,
but many image denoising [1], [2], compression [3], and
segmentation [4] algorithms take it as an input parameter; and
their performance depends heavily on the accuracy of the noise
level estimate.

The most widely used noise model, which is assumed
in this work as well, is signal-independent additive white
Gaussian noise. Noise variance estimation algorithms were
being developed over the last two decades; and most of them
include one or several common steps:

1) Separation of the signal from the noise.
a) Preclassification of homogeneous areas [5], [6],

[7], [8]. These areas are the most suitable for
noise variance estimation, because the noisy image
variance equals the noise variance there.

b) Image filtering [9], [10], [6], [11], [12], [13],
[14], [15]. The processed image is convolved with
a high-pass filter (e.g. Laplacian kernel); or the
difference of the processed image and the response
of a low-pass filter is computed. The filtering
result contains the noise as well as object edges,

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

S. Pyatykh, J. Hesser, and L. Zheng are with the University Medical
Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167
Mannheim, Germany (e-mail: stanislav.pyatykh@medma.uni-heidelberg.de;
juergen.hesser@medma.uni-heidelberg.de; lei.zheng@medma.uni-
heidelberg.de).

This work was supported by grants AIF KF2769301FRQ, DFG HE
3011/23-1, and DFG HE 3011/14-1.

which can be recognized by an edge detector and
removed. The result of this procedure is assumed
to contain only the noise, which allows direct
estimation of the noise variance.

c) Wavelet transform [16], [17], [18], [19]. The sim-
plest assumption that the wavelet coefficients at the
finest decomposition level (subband HH1) corre-
spond only to the noise often leads to significant
overestimates [19], because these wavelet coeffi-
cients are affected by image structures as well. In
[16], it is assumed that only wavelet coefficients
with the absolute value smaller than some threshold
are caused by the noise, where the threshold is
found by an iterative procedure.

2) Analysis of the local variance estimate distribution [10],
[11], [20], [21], [22], [23]. The result of the signal and
noise separation is often not perfect, therefore the dis-
tribution of local (computed for image blocks) variance
estimates contains outliers. Thereby, robust statistical
methods insensitive to outliers are applied in order
to compute the final noise variance estimate. Several
approaches have been proposed here, such as the median
of local estimates [10], the mode of local estimates [21],
and the average of several smallest local estimates [22],
[23].

Furthermore, there are some other original approaches:
discrete cosine transform (DCT) of image blocks [24] concen-
trates image structures in low frequency transform coefficients,
allowing noise variance estimation using high frequency co-
efficients; 3D DCT of image block stacks [25] utilizes image
self-similarity in order to separate the signal from the noise.
In [26], the gray value distribution is analyzed. Gray values
caused by image structures are considered as outliers; and
a robust estimator is suggested. In [27], the distribution of
a bandpass filter response is modeled as a two distribution
Gaussian mixture, where the distributions are associated with
the signal and the noise respectively. The model parameters
are computed using the expectation-maximization algorithm.
The digital representation of images is considered in work
[28], where a measure of bit-plane randomness is used in
order to compute the noise variance estimate. The authors
of [29] suggest that the kurtosis of marginal bandpass filter
response distributions should be constant for a noise-free
image. That allows the construction of a kurtosis model for a
noisy image; and the noise variance is assessed by finding
the best parameters of this model. In [19], the processed
image is denoised by the BayesShrink algorithm using several
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values of the noise variance; and the behavior of the residual
autocorrelation in a range of noise variance values is analyzed
in order to find the true noise variance. In [30], a theoretical
result for the noise standard deviation was established for
the case when the observed image results from the random
presence or absence of the signal in additive white Gaussian
noise. Two training methods were proposed in [17]. In the
first method, the noise standard deviation estimate is computed
as a linear combination of normalized moments with learned
coefficients. In the second method, the value of the cumulative
distribution function (CDF) of local variances at a given point
is computed for training images and stored in a lookup table
against the noise variance. For a new image, the noise variance
estimate is taken from the lookup table using the CDF value
of this image. Last but not least, a Bayesian framework with
a learned Markov random field prior (Fields of Experts [31])
for simultaneous deblurring and noise level estimation was
proposed in [32].

Most of the methods listed above are based on the assump-
tion, that the processed image contains a sufficient amount of
homogeneous areas. However, this is not always the case, since
there are images containing mostly textures. The problem of
the noise variance estimation for such images has not been
solved yet.

In this work, we propose a new noise level estimation
method. It is based on principal component analysis (PCA)
of image blocks, which has been already successfully utilized
in various image processing tasks such as compression [33],
denoising [34], [35], [36], and quality assessment [37]. The
advantages of the proposed method are:

1) high computational efficiency;
2) ability to process images with textures, even if there are

no homogeneous areas;
3) the same or better accuracy compared with the state of

the art.

The rest of the article is organized as follows. We start
with an example describing the idea in Subsection II-A. The
method is explained in detail in Subsections II-B – II-E.
The algorithm is given in Subsection II-F; and its efficient
implementation is discussed in Subsection II-G. The results
and the discussion are represented in Sections III and IV
respectively. We conclude in Section V.

II. METHOD

A. Idea of the Method

Let us demonstrate the ability of image block PCA to
estimate the noise variance on a simple 1D example. Consider
noise-free signal (xk) = (2 + (−1)k) = (1, 3, 1, 3, . . .)
and noisy signal (yk) = (xk + nk), where nk are re-
alizations of a random variable with normal distribution
N (0; 0.52). The processing of these signals using a sliding
window, with the width equal to 2, results in two point
sets: {xk} = {(xk;xk+1)} for the noise-free signal and
{yk} = {(yk; yk+1)} = {(xk;xk+1) + (nk;nk+1)} for the
noisy signal. By construction, points xk can have only two
values: (1; 3) or (3; 1). Points yk are presented in Fig. 1.
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Fig. 1. Points yk in original coordinate system (w1;w2); new coordinate
system (u1;u2) computed by PCA.

Applying PCA to point set {yk} gives new coordinate
system (u1;u2) (also shown in Fig. 1), in which u1 is
associated with both the noise-free signal and the noise, and u2

is associated only with the noise. This allows the computation
of the noise variance estimate as the variance of the points
along u2.

This example shows some properties of the proposed
method:

1) The method can be applied if the blocks computed from
the noise-free signal can be represented by a number
of dimensions smaller than the block size. In the ex-
ample above, 2-dimensional points xk with coordinates
(−
√

2; 0) or (
√

2; 0) in the new coordinate system are
purely situated on u1. Therefore, they can be represented
by 1-dimensional values in the new coordinate system.

2) If the blocks computed from the noise-free signal cannot
be represented by a number of dimensions smaller than
the block size, we cannot apply PCA directly in order to
get the noise variance. In the example above, if the block
set had three centroids, which did not lie on one line,
then PCA would not provide a coordinate associated
only with the noise.

3) No assumption about signal constancy is required. In-
deed, in the example above, noise-free signal (xk)
contains no constant parts.

B. Image Block Model

Similar to the previous subsection, let x be a noise-free
image of size S1 × S2, where S1 is the number of columns
and S2 is the number of rows, y = x+n be an image corrupted
with signal-independent additive white Gaussian noise n with
zero mean. Noise variance σ2 is unknown and should be
estimated.
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Each of images x, n, y contains N = (S1 − M1 +
1)(S2 − M2 + 1) blocks of size M1 × M2, whose left-
top corner positions are taken from set {1, . . . , S1 − M1 +
1} × {1, . . . , S2 −M2 + 1}. These blocks can be rearranged
into vectors with M = M1M2 elements and considered as
realizations xi, ni, yi, i = 1, . . . , N of random vectors X, N,
and Y respectively. As n is signal-independent additive white
Gaussian noise, N ∼ NM (0, σ2I) and cov(X,N) = 0.

C. Principal Component Analysis

Let SX, SY be the sample covariance matrices of X and
Y respectively, λ̃X,1 ≥ λ̃X,2 ≥ . . . ≥ λ̃X,M be the eigen-
values of SX with the corresponding normalized eigenvectors
ṽX,1, . . . , ṽX,M , and λ̃Y,1 ≥ λ̃Y,2 ≥ . . . ≥ λ̃Y,M be the
eigenvalues of SY with the corresponding normalized eigen-
vectors ṽY,1, . . . , ṽY,M . Then, ṽT

Y,1Y, . . . , ṽT
Y,MY represent

the sample principal components of Y [38], which have the
property

s2(ṽT
Y,kY) = λ̃Y,k, k = 1, 2, . . . ,M

where s2 denotes the sample variance.
In order to develop our method further, we define a class

of noise-free images, for which PCA can be applied for
noise variance estimation. Such noise-free images satisfy the
following assumption:

Assumption 1: Let m be a predefined positive integer num-
ber. The information in noise-free image x is redundant in
the sense that all xi lie in subspace VM−m ⊂ RM , whose
dimension M −m is smaller than the number of coordinates
M .

When this assumption holds, we consider that random
vector X takes its values only in subspace VM−m. It means
the existence of a linear dependence between components of
X, i.e. a linear dependence between pixels of x in the image
blocks. This assumption also implies that X has zero variance
along any direction orthogonal to VM−m. The value of m is
listed in Table II.

The following theorem provides a way to apply PCA for
noise variance estimation:

Theorem 1: If Assumption 1 is satisfied then E(|λ̃Y,i−σ2|)
is bounded above by σ2/

√
N asymptotically:

E(|λ̃Y,i − σ2|) = O(σ2/
√
N), N →∞ (1)

for all i = M −m+ 1, . . . ,M .1

The formal proof is given in the Appendix.
The result of Theorem 1 can be intuitively explained as

follows. When considering population principal components,
cov(X,N) = 0 implies that ΣY = ΣX + ΣN, where ΣX,
ΣN, and ΣY are the population covariance matrices of X, N,
and Y respectively. Furthermore, ΣN = σ2I and m smallest
eigenvalues of ΣX are zeros under Assumption 1. Hence m
smallest eigenvalues of ΣY equal σ2. For sample principal
components, these equalities hold only approximately, i.e.
λ̃Y,i, i = M − m + 1, . . . ,M are approximately equal σ2,

1Big O notation means that ∃C, ∃N0 such that ∀N ≥ N0 E(|λ̃Y,i −
σ2|) ≤ Cσ2/

√
N , where C does not depend on the distributions of X and

N.

and the error |λ̃Y,i − σ2| converges to zero as sample size
N tends to infinity. Theorem 1 gives an asymptotic bound
for the convergence speed. It states that the expected value of
|λ̃Y,i − σ2| converges to zero as σ2/

√
N or faster.

According to Theorem 1, when Assumption 1 is satisfied,

lim
N→∞

E(|λ̃Y,M − σ2|) = 0 (2)

i.e. λ̃Y,M converges in mean to σ2. Therefore, the noise
variance can be estimated as λ̃Y,M . Since convergence in
mean implies convergence in probability, λ̃Y,M is a consistent
estimator of the noise variance.

D. Check of Assumption 1

When Assumption 1 is right, we can compute the expected
value of difference λ̃Y,M−m+1 − λ̃Y,M by applying the
triangle inequality and (1):

E(λ̃Y,M−m+1 − λ̃Y,M ) = O(σ2/
√
N). (3)

Hence, we have a necessary condition for the fulfillment of
Assumption 1:

λ̃Y,M−m+1 − λ̃Y,M < Tσ2/
√
N (4)

where T > 0 is a fixed threshold, whose value is listed in
Table II.

A question may arise whether condition (4) can be made
stronger. Our experiments with image x = 0 (see Fig. 2)
show that E(λ̃Y,1 − λ̃Y,M ) fits to function const · σ2/

√
N .

Therefore, (3) is a tight upper bound, and (4) cannot be
improved by changing the exponents of σ or N .

Then, if we have some estimate σ2
est of the noise variance,

we can check (4) in order to check Assumption 1. If (4) holds,
we take σ2

est as our final estimate. Otherwise, Assumption 1 is
not satisfied, and we try to extract a subset of image blocks, for
which Assumption 1 holds. This leads to an iterative procedure
described in Subsection II-F.

E. Extraction of the Image Block Subset

As mentioned in the previous subsection, we need a strategy
to extract a subset of image blocks, which satisfies Assumption
1. Let di be the distances of xi to VM−m, i = 1, . . . , N .
Assumption 1 holds, i.e. xi ∈ VM−m, i = 1, . . . , N , if and
only if di = 0, i = 1, . . . , N . Trying to satisfy this condition,
it is reasonable to discard the blocks with the largest di from
the total N image blocks.

Unfortunately, the values of di are not available in practice.
Computation of the distances of yi to VM−m does not help,
since a large distance of yi to VM−m can be caused by noise.
Several heuristics may be applied therefore in order to select
blocks with largest di, e.g. to pick blocks with largest standard
deviation, largest range, or largest entropy. We use the first
strategy, since it is fast to compute and the results are the
most accurate in most cases. This strategy is examined below.

Let us consider the Spearman’s rank correlation coefficient
ρ between di and s(xi), where s(xi) is the sample standard
deviation of elements of block xi, i = 1, . . . , N . We have com-
puted ρ for the reference images from the TID2008 database
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Fig. 2. The round markers and the vertical bars are the mean values
of λ̃Y,1 − λ̃Y,M and their 99% confidence intervals computed from 100
realizations of noise n respectively. The lines are the approximation by
function 13.2σ2/

√
N . (a) λ̃Y,1 − λ̃Y,M as a function of variance σ2

(N = 105, M = 4 × 4). (b) λ̃Y,1 − λ̃Y,M as a function of number of
blocks N (σ2 = 5, M = 4× 4).

[39]. The results are shown in Table I. As one can see, there is
a considerable positive correlation between di and s(xi). That
means large s(xi) commonly corresponds to large di. Since
the noise is signal-independent, s2(xi) approximately equals
s2(yi) − σ2. Hence large s2(yi) commonly corresponds to
large di. As a result, we can discard blocks with the largest
s2(yi) in order to discard blocks with the largest di.

The experiment presented in Table I shows that image
structures, which are different from the general image texture,
typically have a large local variance. However, this is not the
case for all images. For example, the image shown in Fig.
3 consists of two parts: a stripe pattern on the left side, and
a complicated texture on the right side. s(xi) = 127.5 and
the mean of di is 0.1 for the blocks in the stripe pattern, but
s(xi) = 49.2 and the mean of di is 9.1 for the blocks in the
complicated texture even for m = 1. This synthetic example is
unlikely for real-world images, but it shows that the heuristic
we use cannot be proven.

TABLE I
THE VALUES OF ρ FOR THE REFERENCE IMAGES FROM THE TID2008
DATABASE (75 GRAYSCALE IMAGES). THE SECOND COLUMN IS THE
SAMPLE MEAN AND THE THIRD COLUMN IS THE SAMPLE STANDARD

DEVIATION COMPUTED ACROSS ALL IMAGES. VM−m WAS COMPUTED AS
THE LINEAR SPAN OF ṽX,1, . . . , ṽX,M−m . M = 5× 5.

m ρ s(ρ)
2 0.52 0.140
3 0.59 0.135
4 0.63 0.125
5 0.67 0.116
6 0.70 0.110
7 0.72 0.105
8 0.74 0.102
9 0.76 0.098

10 0.78 0.082
11 0.80 0.078
12 0.81 0.079
13 0.82 0.076
14 0.83 0.074
15 0.84 0.075

Fig. 3. A counterexample for the selection of the blocks with the largest
standard deviation.

F. Algorithm

Our noise variance estimation algorithm is presented in
the main function EstimateNoiseVariance, which calls
GetUpperBound and GetNextEstimate. In these func-
tions, Q(p) is the p-quantile of {s2(yi), i = 1, . . . , N}
computed using Definition 3 from [40], and B(p) is the subset
of blocks of image y, whose sample variance is not greater
than Q(p):

B(p) = {yi | s2(yi) ≤ Q(p), i = 1, . . . , N}. (5)

Function EstimateNoiseVariance takes the result of
function GetUpperBound as the initial estimate and itera-
tively calls function GetNextEstimate until convergence
is reached. Parameter imax is the maximum number of itera-
tions. Its value is listed in Table II.

Function GetUpperBound computes a noise variance
upper bound. This function is independent from image block
PCA in order to increase the robustness of the algorithm.
Similar to many other noise estimation algorithms, it is based
on the analysis of the image block variance distribution (see
Section I). Namely, this function returns C0Q(p0). The values
of C0 and p0 are listed in Table II.

Function GetNextEstimate extracts the subset of the
image blocks, which satisfies Assumption 1. It implements the
approaches described in Subsections II-D and II-E by taking
p-quantiles of the block variance distribution. It starts from the
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Function 1 EstimateNoiseVariance
Input: Image y
Output: Noise variance estimate σ2

est

1: σ2
ub ← GetUpperBound(y)

2: σ2
est ← σ2

ub

3: for i = 1 to imax do
4: σ2

next ← GetNextEstimate(y, σ2
est, σ

2
ub)

5: if σ2
est = σ2

next then
6: return σ2

est

7: end if
8: σ2

est ← σ2
next

9: end for
10: return σ2

est

largest possible p equal to 1, which corresponds to the whole
set of image blocks. Then it discards blocks with the largest
variance by reducing p to 1−∆p, 1− 2∆p, and so on, until
p is smaller than pmin. The values of pmin, ∆p, and T are
listed in Table II. Upper bound σ2

ub is used as an additional
check of the correctness of the computed estimate.

Function ApplyPCA computes λ̃Y,i, i = 1, . . . ,M .

Function 2 GetNextEstimate
Input: Image y, previous estimate σ2

est, upper bound σ2
ub

Output: Next estimate σ2
next

1: p← 1
2: σ2

next ← 0
3: while p ≥ pmin do
4: λ̃Y,1, . . . , λ̃Y,M ← ApplyPCA( B(p) )
5: σ2

next ← λ̃Y,M
6: if λ̃Y,M−m+1 − λ̃Y,M < Tσ2

est/
√
|B(p)| and

σ2
next ≤ σ2

ub then
7: return σ2

next

8: end if
9: p← p−∆p

10: end while
11: return σ2

next

G. Fast Implementation

When considering the execution time of the program, we
have to concentrate on function ApplyPCA, because it is
called inside two loops: the first loop is in lines 3–9 of function
EstimateNoiseVariance; and the second loop is in lines
3–10 of function GetNextEstimate. Function ApplyPCA
consists of two parts:

1) Computation of the sample covariance matrix

1

|B(p)| − 1

( ∑
yi∈B(p)

yiy
T
i −

1

|B(p)|
∑

yi∈B(p)

yi
∑

yi∈B(p)

yT
i

)
.

(6)
The number of operations is proportional to |B(p)|M2.

2) Computation of the eigenvalues of the sample covariance
matrix. The number of operations is proportional to M3

[41].

Since |B(p)| �M , the computation of the sample covariance
matrix is the most expensive part of function ApplyPCA.

Let CX =
∑

yi∈X yiy
T
i and cX =

∑
yi∈X yi. Note that

for disjoint sets X1 and X2, CX1∪X2 = CX1 + CX2 and
cX1∪X2

= cX1
+ cX2

. Then (6) can be represented as

1

|B(p)| − 1

(
CB(p) −

1

|B(p)|
cB(p)c

T
B(p)

)
. (7)

Function ApplyPCA is called only with arguments

B(1) ⊃ B(1−∆p) ⊃ · · · ⊃ B(1− n∆p) (8)

where n = b(1− pmin)/∆pc and bxc is the largest integer
not greater than x. For j = 0, . . . , n− 1, let us consider sets

Yj = {yi | Q(1− (j+ 1)∆p) < s2(yi) ≤ Q(1− j∆p)}. (9)

Then, B(1− j∆p) = B(1− (j + 1)∆p) ∪ Yj .
At the beginning of the program, we precompute matrices

CB(1−j∆p) and vectors cB(1−j∆p), j = 0, . . . , n in the fol-
lowing way. Matrices CB(1−n∆p), CY0

, . . . , CYn−1
and vectors

cB(1−n∆p), cY0 , . . . , cYn−1 are computed by definition and

CB(1−j∆p) = CB(1−(j+1)∆p) + CYj

cB(1−j∆p) = cB(1−(j+1)∆p) + cYj (10)

for j = n − 1, . . . , 0. Then, these precomputed matrices and
vectors are utilized in function ApplyPCA when computing
the sample covariance matrix using (7). When the precomputa-
tion is applied, the number of operations in (7) is proportional
to M2, which is |B(p)| times smaller than in the direct
implementation. Recursive procedure (10) ensures that the
precomputation itself is optimal in the sense that expression
yiy

T
i is computed only once for each vector yi.

III. EXPERIMENTS

We have evaluated the accuracy and the speed of our method
on two databases: TID2008 [39] and MeasTex [42].

The proposed algorithm has been compared with several
recent methods:

1) methods which assume that the input image has a
sufficient amount of homogeneous areas:

a) [8], where Fisher’s information is used in order to
divide image blocks into two groups: homogeneous
areas and textural areas.

b) [13], which applies a Sobel edge detection operator
in order to exclude the noise-free image content.

c) [11], which applies Laplacian convolution and edge
detection in order to find homogeneous areas.

d) [18], which estimates the noise standard deviation
as the median absolute deviation of the wavelet
coefficients at the finest decomposition level. The
Daubechies wavelet of length 8 has been used in
the experiments.

e) [21], where the noise variance is estimated as the
mode of the distribution of local variances.

f) [22], which divides the input image into blocks and
computes the block standard deviations.

g) [15], which subtracts low-frequency components
detected by a Gaussian filter and edges detected by
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TABLE II
ALGORITHM PARAMETERS

M1 5
M2 5
C0 3.1
p0 0.0005
m 7
T 49

∆p 0.05
pmin 0.06
imax 10

an edge detector from the input image. Since the
method computes the noise variance as a function
of the gray value, the estimates for all gray values
have been averaged in order to compute the final
estimate, as suggested by the authors during the
personal discussion.

2) methods which use other assumptions about the input
image:

a) [25], where nonlocal self-similarity of images is
used in order to separate the noise from the signal.

b) [24], where signal and noise separation is achieved
with discrete cosine transform.

c) [32], which treats the noise variance as a parameter
of a Bayesian deblurring and denoising framework.

d) [29], where the noise variance is estimated from
a kurtosis model under the assumption that the
kurtosis of marginal bandpass filter response distri-
butions should be constant for a noise-free image.

e) [28], which uses a measure of bit-plane random-
ness.

f) [16], which utilizes multiresolution support data
structure assuming that small wavelet transform
coefficients correspond to the noise.

We have implemented our method both in C++ and Matlab
in order to compare its execution time both with machine code
and Matlab implementations of the others. The source code of
both C++ and Matlab implementations is available at http:
//physics.medma.uni-heidelberg.de/cms/projects/132-pcanle.

A. Choice of the Parameters

We have tested our algorithm with different sets of the
parameters; and we suggest the set presented in Table II. It
has been used in all experiments in this section.

Regarding block size M1×M2, there is a trade-off between
the ability to handle complicated textures and the statistical
significance of the result. In order to satisfy Assumption 1,
we need to find correlations between pixels of the image
texture. Hence, the block size should be large enough, and,
at least, be comparable to the size of the textural pattern. On
the other hand, the block size cannot be arbitrary large. Since
λ̃Y,M is the smallest order statistic of the sample eigenvalues
representing the noise, its expected value for a finite N has a
negative bias, which increases with M = M1M2. Therefore,
the block size should be as small as possible. 4×4, 5×5, and
6 × 6 blocks are good choices for real-world images of size

Fig. 4. Images from the TID2008 database.

from 128×128 to 2048×2048; and we use 5×5 blocks in the
experiments. When the horizontal and the vertical resolution
of the input image are not equal, nonsquare blocks can be
considered as well.

Parameters C0 and p0 have been chosen so that σ2
ub =

C0Q(p0) is an upper bound of the true noise variance, i.e.
this value always overestimates the noise level. Similar to [22]
and [23], blocks with the smallest variances are used here, i.e.
p0 is close to 0. During the experiments with TID2008 and
MeasTex, the output of our algorithm was never equal to σ2

ub,
hence it was always a PCA-based estimate.

Check (4) is robust when the difference between eigenvalue
indices M − m + 1 and M is large, i.e. when m is large.
However, if m is too large, λ̃Y,M−m+1 is often influenced
by the noise-free image data. m = 7 works properly for all
images. The selection of T depends on the selection of m.

The results are not sensitive to parameter imax, which can
be selected from range [3; +∞). This parameter is needed only
to guarantee that the algorithm always stops.

In 8-bit images with the gray value range [0; 255], the noise
is usually clipped. In order to prevent the influence of clipping
to the noise level estimation process, we skip blocks, in which
more than 10% of pixels have the value 0 or 255.

B. Noise Level Estimation Experiments with TID2008

The TID2008 database contains 25 RGB images. 24 of them
are real-world scenes and one image is artificial. Each color
component has been processed independently, i.e. the results
for each noise level have been obtained using 75 grayscale
images. Noisy images with the noise variance 65 and 130 are
included in the database; and we have additionally tested our
method with the noise variance 25 and 100. This database has
been already applied for the evaluation of several other noise
level estimation methods [25], [8], [43]. Some images from
the database are shown in Fig. 4.

Though the reference images from TID2008 are considered
as noise-free images, they still contain a small level of noise.
This level should be estimated in order to compare all meth-
ods fairly. We have done this by using the following semi-
automatic procedure:
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1) Rectangular homogeneous area A has been selected
manually in each reference image. This area contains
almost no structure, i.e. it contains almost only noise
with variance σ2

ref . Therefore, the distribution of x(i, j),
(i, j) ∈ A can be approximated by N (µA, σ

2
ref ), where

µA is the mean value of x(i, j) in A.
2) We have used a high-pass filter (see Section I) in order

to remove possible image structures from A. Namely,
we have considered the following differences between
neighbor pixels:

a)
(
x(i+1, j)−x(i, j)

)
/
√

2, if width(A) > height(A),
b)
(
x(i, j+1)−x(i, j)

)
/
√

2, if width(A) ≤ height(A),
where (i, j), (i+ 1, j), (i, j + 1) ∈ A.

3) Since x(i, j) ∼ N (µA, σ
2
ref ),(

x(i+ 1, j)− x(i, j)
)
/
√

2 ∼ N (0, σ2
ref )(

x(i, j + 1)− x(i, j)
)
/
√

2 ∼ N (0, σ2
ref ) (11)

where (i, j), (i + 1, j), (i, j + 1) ∈ A. Therefore, the
noise variance σ2

ref has been estimated as the variance
of these differences.

The manually selected areas and the values of σ2
ref are avail-

able at http://physics.medma.uni-heidelberg.de/cms/projects/
132-pcanle.

Then, all noise variance estimates have been corrected
according to the following formula:

σ2
corr = σ2

est − σ2
ref (12)

where σ2
est is the algorithm output.

The comparison results are presented in Tables III and IV.
Since the execution time of [25] is not provided by the author,
we have measured the execution time of the BM3D filter [2],
which is a step of [25].

As one can see, the accuracy of the proposed method is
the highest in most cases. The results of [25] and [8] are
comparable to our results, but these approaches are much
slower than the proposed method: [25] is more than 15 times
slower; and [8] is about 50–180 times slower (assuming that
the hardware speed difference is about 2 times).

The method [24] has 2 times larger s(σcorr) and
max |σcorr−σ| than the proposed method. The methods [13],
[11], [18], [21], [22], [15], [32], [29], [28], [16] have more
than 3 times larger s(σcorr) and more than 4 times larger
max |σcorr − σ| compared with the proposed method. The
bias of these methods is much larger than that of our method
in most cases.

C. Noise Level Estimation Experiments with MeasTex

All images in the TID2008 database contain small or large
homogeneous areas. However, this is not the case for all
images one can meet. For this reason, we have tested our
method on images containing only textures. We have selected
the MeasTex texture database, which has been already used in
many works on texture analysis [42], [44], [45]. This database
contains 236 real textures stored as 512 × 512 grayscale
images. Several images from the database are shown in Fig.
5.

TABLE IV
THE ACCURACY OF THE CONSIDERED METHODS FOR TID2008. σcorr − σ

IS THE BIAS OF CORRECTED ESTIMATES, s(σcorr) IS THE STANDARD
DEVIATION OF CORRECTED ESTIMATES, max |σcorr − σ| IS THE

MAXIMUM DIFFERENCE BETWEEN A CORRECTED ESTIMATE AND THE
TRUE VALUE. THE LAST COLUMN IS THE PERCENTAGE OF THE IMAGES,

FOR WHICH A METHOD CANNOT ESTIMATE THE NOISE LEVEL. THE BEST
RESULT IN A COLUMN IS SELECTED WITH THE BOLD FONT. FOR THE

METHODS MARKED WITH *, THE VALUES OF σest HAVE BEEN PROVIDED
BY THE AUTHORS.

Method σcorr − σ s(σcorr) max |σcorr − σ| % of failures
σ2 = 25 (σ = 5)

proposed -0.027 0.147 0.500 0
[8] − − − −

[13] 0.322 0.547 2.859 0
[11] 0.605 0.882 4.116 0
[18] 1.127 1.030 5.194 0
[21] 0.617 1.530 8.941 0
[22] -1.499 1.822 5.000 57.3
[15] 4.954 3.408 21.037 0
[25]* -0.039 0.158 0.525 0
[24] − − − −
[32] -0.345 0.857 3.507 0
[29] -0.487 3.323 24.719 1.3
[28] 3.227 2.266 9.158 0
[16] 2.144 2.224 8.903 0

σ2 = 65 (σ ≈ 8.062)
proposed -0.043 0.103 0.486 0

[8]* -0.074 0.110 0.401 0
[13] 0.228 0.430 2.093 0
[11] 0.206 0.769 2.867 0
[18] 0.724 1.003 4.281 0
[21] 0.292 1.526 6.343 0
[22] -1.467 2.044 8.062 45.3
[15] 4.049 3.290 19.557 0
[25] − − − −
[24]* 0.001 0.209 1.078 0
[32] -0.858 0.971 4.211 0
[29] -0.899 1.384 8.062 0
[28] 3.173 1.671 8.968 0
[16] 2.067 2.325 10.160 0

σ2 = 100 (σ = 10)
proposed 0.009 0.125 0.307 0

[8] − − − −
[13] 0.232 0.412 1.935 0
[11] 0.269 0.640 3.088 0
[18] 0.819 0.900 4.011 0
[21] 0.582 1.061 6.019 0
[22] -1.517 2.145 10.000 42.7
[15] 3.553 3.111 20.238 0
[25]* 0.040 0.175 0.717 0
[24] − − − −
[32] -0.746 0.750 2.400 0
[29] -0.395 2.749 20.956 0
[28] 2.204 2.519 9.551 0
[16] 2.248 1.868 7.281 0

σ2 = 130 (σ ≈ 11.402)
proposed 0.014 0.110 0.386 0

[8]* -0.040 0.136 0.532 0
[13] 0.224 0.390 1.943 0
[11] -0.025 0.777 3.297 0
[18] 0.477 0.989 3.711 0
[21] 0.250 1.464 5.665 0
[22] -1.467 2.086 6.811 41.3
[15] 3.325 3.506 21.502 0
[25] − − − −
[24]* 0.094 0.228 1.170 0
[32] -1.140 1.062 5.351 0
[29] -0.634 2.634 19.321 0
[28] 2.700 2.510 9.604 0
[16] 2.132 2.279 10.197 0
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TABLE III
THE EXECUTION TIME OF THE CONSIDERED METHODS FOR TID2008. min t IS THE MINIMUM EXECUTION TIME, t IS THE AVERAGE EXECUTION TIME,
max t IS THE MAXIMUM EXECUTION TIME. ALL IMPLEMENTATIONS ARE SINGLE-THREADED. FOR THE METHODS MARKED WITH *, THE VALUES HAVE

BEEN PROVIDED BY THE AUTHORS.

Method Machine code (C++, Object Pascal) Matlab CPU
min t t max t min t t max t

proposed 102 ms 159 ms 169 ms 911 ms 1491 ms 1583 ms Intel i7 920 2.67 GHz
[8]* − − − 3 min − 10 min Intel Core 2 Duo 1.66 GHz
[13] 1.9 ms 3.1 ms 3.5 ms − − − Intel i7 920 2.67 GHz
[11] − − − 635 ms 682 ms 1608 ms Intel i7 920 2.67 GHz
[18] − − − 36 ms 38 ms 43 ms Intel i7 920 2.67 GHz
[21] − − − 62 ms 73 ms 402 ms Intel i7 920 2.67 GHz
[22] 1.0 ms 1.1 ms 18.8 ms − − − Intel i7 920 2.67 GHz
[15] − − − 532 ms 681 ms 1621 ms Intel i7 920 2.67 GHz

[25] ([2]) 2628 ms − − − − − Intel i7 920 2.67 GHz
[24]* ∼ 250 ms − − − Intel Celeron 1.4 GHz
[32] − − − 3.7 min 4.8 min 10 min Intel i7 920 2.67 GHz
[29] − − − 2968 ms 2968 ms 3373 ms Intel i7 920 2.67 GHz
[28] 80 ms 123 ms 140 ms − − − Intel i7 920 2.67 GHz
[16] 520 ms 805 ms 980 ms − − − Intel i7 920 2.67 GHz

Fig. 5. Images from the MeasTex database.

The comparison results are presented in Table V. Compared
with other methods, the accuracy of the proposed method
is significantly better in all cases: the standard deviation of
the estimates is always more than 2.8 times smaller; and the
maximum error is always more than 2.2 times smaller. The
bias of our method is much smaller in most cases as well.
The results of [8], [25], and [24] are not available.

This experiment also shows the limitations of the proposed
method. Among 236 images in the database, there are 4
images, for which the error is larger than 3s(σest). These
images are textures of fabric and metal (see Fig. 6). In order
to examine the properties of these images, we have computed
the following measure for each image x in the database:

Rx =
1

24

( 4∑
∆i=0

4∑
∆j=0

|Rx(∆i,∆j)| − |Rx(0, 0)|
)

(13)

where Rx is the autocorrelation function:

Rx(∆i,∆j) =
1

σ2
xNx

∑
i,j

(x(i, j)−µx)(x(i+∆i, j+∆j)−µx).

(14)
Above, the sum is computed over all i and j such that (i, j)
and (i+ ∆i, j + ∆j) are inside the image domain, Nx is the
number of items in this sum, σ2

x is the variance of image x, and
µx is the mean of image x. Rx is always in [0; 1]. It reflects
the correlation between neighbor image pixels: Rx = 0 when
x is white noise; and Rx = 1 when the neighbor pixels in x
are in an exact linear dependence. For MeasTex, the average
value of Rx is 0.6 and the standard deviation is 0.2. For the
images shown in Fig. 6, Rx takes its smallest values: 0.08,
0.07, 0.06, and 0.09. Therefore, these images are the closest
to white noise in the database, which explains the largest error
of our algorithm for these images.

D. Denoising Experiments

Finally, we tested the noise level estimation algorithms in a
denoising application. We utilized the denoising method [2],
which outperforms the methods [46], [47], [48], [49] and can
be considered as the state of the art in image denoising. The
results are presented in Table VI. Due to the article length
limitation, only the minimal value of the peak signal-to-noise
ratio (PSNR) over each image database is presented. However,
this value represents the behavior of a noise level estimator in
the worst case and, therefore, the applicability of the estimator.
Note that the minimal value is undefined for the methods
which fail on some images.

Regarding the TID2008 database, the methods [8], [25] and
the proposed method result in roughly the same denoising
quality as the true noise levels. The results of the method
[29] are good for high noise levels, but become significantly
worse as the noise level decreases. The minimal PSNR for
the other methods is more than 0.4 dB lower than that for the
proposed method. For the noise variances 65, 100, and 130,
the results with our algorithm or the method [8] are slightly
better than the results with the true noise levels, because the
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TABLE VI
THE MINIMAL PSNR FOR DIFFERENT NOISE LEVEL ESTIMATORS. FOR TID2008, CORRECTED ESTIMATES σcorr WERE USED. THE ROW ”NOISY IMAGE

PSNR” SHOWS THE PSNR BEFORE DENOSING. THE ROW ”TRUE σ” SHOWS THE PSNR WHEN THE TRUE NOISE LEVEL IS PASSED TO THE DENOISER.
THE METHODS WHICH HAVE FAILURES ARE MARKED WITH ”F”. THE BEST RESULT AMONG THE NOISE LEVEL ESTIMATORS IN EACH COLUMN IS

SELECTED WITH THE BOLD FONT.

Method TID2008 MeasTex
σ2 = 25 σ2 = 65 σ2 = 100 σ2 = 130 σ = 10 σ = 15 σ = 20
(σ = 5) (σ ≈ 8.062) (σ = 10) (σ ≈ 11.402)

Noisy image PSNR 34.15 30.00 28.13 26.99 28.13 24.61 22.11
True σ 35.08 31.53 30.05 29.08 28.42 25.20 22.98

proposed 35.03 31.54 30.06 29.12 26.99 24.53 22.67
[8] − 31.57 − 29.14 − − −
[13] 33.21 30.43 29.24 28.36 21.87 21.08 20.25
[11] 32.21 30.09 29.03 28.34 22.30 21.35 20.41
[18] 30.75 29.10 28.26 27.66 20.71 20.12 19.46
[21] 28.78 28.26 27.62 27.08 15.47 15.50 15.38
[22] F F F F F F F
[15] 29.53 28.38 27.72 27.36 F F F
[25] 34.97 − 29.78 − − − −
[24] − 31.05 − 28.67 − − −
[32] 32.36 30.11 28.99 28.31 16.50 16.19 15.86
[29] F 30.68 30.03 29.11 F 19.63 F
[28] 28.50 27.11 26.28 25.77 14.80 14.69 14.58
[16] 28.64 27.65 27.06 26.60 15.88 15.77 15.64

Fig. 6. Images, for which the proposed method has an error larger than
3s(σest). The top row: fabric textures. The bottom row: metal textures.

denoising algorithm [2] achieves the best PSNR at some noise
level, which is close to the true value but not exactly equal to
it.

Speaking of the MeasTex database, the minimal PSNR with
our method is smaller than the noisy image PSNR when σ is
low. For σ = 20, the minimal PSNR with our algorithm is
better than that for the noisy images but worse than that with
true σ. This reflects the large error of the proposed method on
stochastic textures discussed in the previous subsection. For
all noise levels, our algorithm results in at least 2 dB higher
minimal PSNR than the other methods.

In general, the denoising results show that a higher noise
level estimation accuracy leads to a higher denoising quality

in most cases.

IV. DISCUSSION

The proposed method does not assume the existence of
homogeneous areas in the input image. Instead, it belongs to
the class of algorithms, which are based on a sparse image
representation. One of the first methods from this class is [18],
whereas [24] and [25] are more recent.

The method [18] utilizes a wavelet transform. This approach
does not work well for images with textures, because textures
usually contain high frequencies and affect the finest decom-
position level, from which the noise variance is estimated [19].
It was outperformed by other techniques, e.g. [11], [24], [25],
[19], and [13].

The method [24] applies 2D DCT of image blocks. It
assumes that the image structures occupy only low frequencies
and high frequencies contain only noise. Compared with this
method, the proposed algorithm uses PCA instead of DCT. The
transform computed by PCA depends on the data in contrast
to DCT, which is predefined. Therefore, PCA can efficiently
process a larger class of images, including those which contain
structures with high frequencies. The evidence can be found in
Table IV: the maximum error of [24] is more than two times
larger than that of the proposed method, i.e. PCA can handle
some images in the TID2008 database much more efficiently
than DCT.

Compared with [25], which assumes the existence of similar
blocks in the image, our approach assumes the correlation
between pixels in image blocks. These two assumptions cannot
be compared directly, because there are images which satisfy
the first and does not satisfy the second and vice versa.
Indeed, the experiments with TID2008 demonstrate only a
small improvement of the results compared with [25]. A
more significant difference is in the execution time: [25] has
expensive steps of block matching and image prefiltering,
which make it more than 15 times slower than our algorithm.
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TABLE V
THE ACCURACY OF THE CONSIDERED METHODS FOR MEASTEX. σest − σ

IS THE BIAS OF ESTIMATES, s(σest) IS THE STANDARD DEVIATION OF
ESTIMATES, max |σest − σ| IS THE MAXIMUM DIFFERENCE BETWEEN AN

ESTIMATE AND THE TRUE VALUE. THE LAST COLUMN IS THE
PERCENTAGE OF THE IMAGES, FOR WHICH A METHOD CANNOT ESTIMATE

THE NOISE LEVEL. THE BEST RESULT IN A COLUMN IS SELECTED WITH
THE BOLD FONT.

Method σest − σ s(σest) max |σest − σ| % of failures
σ = 10

proposed 0.283 0.845 7.235 0
[8] − − − −
[13] 1.075 2.418 16.520 0
[11] 0.997 2.746 17.689 0
[18] 1.662 3.486 21.557 0
[21] 6.426 10.334 56.555 0
[22] 1.947 8.118 38.551 68.2
[15] 5.129 5.241 38.756 0.4
[25] − − − −
[24] − − − −
[32] 0.489 5.033 37.958 0
[29] -0.648 2.799 23.646 0.4
[28] 6.917 10.215 75.213 0
[16] 6.014 9.328 47.079 0

σ = 15
proposed 0.170 0.592 4.868 0

[8] − − − −
[13] 0.836 2.007 13.554 0
[11] 0.571 2.266 14.814 0
[18] 1.291 2.969 18.605 0
[21] 5.709 9.294 48.667 0
[22] 1.858 7.238 34.703 57.6
[15] 3.748 4.698 34.986 1.3
[25] − − − −
[24] − − − −
[32] -0.053 4.803 36.573 0
[29] -0.753 2.772 20.942 0
[28] 8.433 10.797 74.195 0
[16] 5.539 8.388 43.381 0

σ = 20
proposed 0.080 0.461 3.084 0

[8] − − − −
[13] 0.625 1.727 11.382 0
[11] 0.239 1.932 12.540 0
[18] 1.015 2.573 16.240 0
[21] 5.054 8.594 46.388 0
[22] 1.238 7.240 31.465 47.0
[15] 2.801 4.641 40.440 3.0
[25] − − − −
[24] − − − −
[32] -0.295 4.656 34.860 0
[29] -0.870 2.398 20.000 1.3
[28] 10.607 12.944 73.093 0
[16] 5.199 7.615 40.076 0

The proposed method can be generalized to 3D images,
which are acquired e.g. by magnetic resonance scanners. In
this case, we have 3D blocks of size M1 ×M2 ×M3, which
are rearranged into vectors of size M = M1M2M3. Then,
these vectors can be processed in the same way as for 2D
images.

Although the proposed method is developed for signal-
independent additive white Gaussian noise, it can be applied
to other noise types by utilizing a variance-stabilizing trans-
formation (VST). The VST transforms the input image into an
image, whose noise is approximately additive white Gaussian
[50]. For example, the VST derived in [51] is used for Rician

noise, and the VST from [52] is used for speckle noise. Then,
the noise level in the transformed image can be estimated by
the proposed method, and the level of the original noise can
be computed.

Our algorithm has some optimization potential. For exam-
ple, the following parts of the program can be efficiently
parallelized:

1) the block variance computation, since it is done for each
block independently;

2) the computation of matrices CB(1−n∆p),
CY0

, . . . , CYn−1
and vectors cB(1−n∆p), cY0

, . . . , cYn−1
,

because they are independent from each other.

V. CONCLUSION

In this work, we have presented a new noise level estimation
algorithm. The comparison with the several best state of the
art methods shows that the accuracy of the proposed approach
is the highest in most cases. Among the methods with similar
accuracy, our algorithm is always more than 15 times faster.

Since the proposed method does not require the existence of
homogeneous areas in the input image, it can also be applied to
textures. Our experiments show that only stochastic textures,
whose correlation properties are very close to those of white
noise, cannot be successfully processed.

During our denoising experiments, we observed that a
higher noise level estimation accuracy leads to a higher denois-
ing quality in most cases. It shows the importance of a careful
selection of the noise estimator in a denoising application. We
also observed that the denoising quality with our algorithm
was approximately the same as that with the true noise level
if the image was not a stochastic texture; hence the proposed
method can be successfully applied in image denoising. Our
approach can also be utilized in image compression and seg-
mentation applications which require noise level estimation.

APPENDIX
PROOF OF THEOREM 1

Further, let ‖A‖ be the spectral norm of matrix A, and 1X
be the indicator function of set X .

Results on the probability distributions for sample principal
components were derived in [53] under the assumption that the
original random vector has a multivariate normal distribution.
However, random vector X can have an arbitrary distribution,
therefore these results cannot be applied here.

Given population covariance matrix ΣY, sample covari-
ance matrix SY can be seen as the sum of ΣY and small
perturbation SY − ΣY. Therefore, our proof is based on
matrix perturbation theory. Specifically, we need to estimate
the perturbation of the eigenvalues. This value can be bounded
by ‖SY−ΣY‖ (Lemma 1 below), which is not a tight bound
in our case. Theorem 2.3 in [54, p. 183] gives an estimate
with accuracy ‖SY − ΣY‖2, but it can be applied only for
eigenvalues with multiplicity 1, which is not the case when
Assumption 1 holds. In [55, p. 76], this result was extended to
the case of eigenvalues with an arbitrary multiplicity. However,
the formulation in [55] has some restrictions and cannot
be applied here directly. For this reason, we use our own
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formulation (Lemma 2 below), whose proof has the same steps
as those in [54] and [55].

Lemma 1: Let A ∈ CM×M and B ∈ CM×M be Hermitian
matrices, λ1 ≥ λ2 ≥ · · · ≥ λM be the eigenvalues of A, and
λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃M be the eigenvalues of perturbed matrix
Ã = A+B. Then ∀i = 1, . . . ,M |λ̃i − λi| ≤ ‖B‖.

Proof: See [54, p. 203].
Lemma 2: Let A ∈ CM×M and B ∈ CM×M be Hermitian

matrices, λ be an eigenvalue of A with multiplicity m and
normalized eigenvectors v1, . . . ,vm, δ > 0 be the minimum
of the distances between λ and the other eigenvalues of A,
and Ã = A + B be a perturbed matrix. If ‖B‖ < δ

4M then
there are exactly m eigenvalues λ̃k of Ã, which satisfy

|λ̃k − λ| ≤ max
i=1,...,m

m∑
j=1

|vT
i Bvj |+

4M2

δ
‖B‖2. (15)

Proof: See [54, p. 183] and [55, p. 76].
Further, let

B = SY −ΣY

d =
δ

4M

µ
(ij)
αβ = E

(
(yi −E(yi))

α(yj −E(yj))
β
)

K = max
i,j=1,...,M

µ
(ij)
22 (16)

where yi are the entries of Y. Note that K depends only on
the distribution of Y and is independent of N .

Lemma 3: In the conditions of Theorem 1

E(‖B‖2) = O
(K
N

)
. (17)

Proof: Let bij be the entries of B. Since E(SY) = ΣY,
E(bij) = 0. From [56], [57],

var(bij) =
µ

(ij)
22

N
+
µ

(ij)
20 µ

(ij)
02

N2 −N
− N − 2

N2 −N
(
µ

(ij)
11

)2
≤ µ

(ij)
22

N
+
µ

(ij)
20 µ

(ij)
02

N2 −N

= O
(K
N

)
(18)

because 1/(N2 − N) is infinitesimal compared with 1/N .
Therefore,

E(‖B‖2) ≤ E
( M∑
i,j=1

b2ij

)
=

M∑
i,j=1

var(bij)

= O
(K
N

)
. (19)

Lemma 4: In the conditions of Theorem 1

E(‖B‖1‖B‖≥d) = O
(K
N

)
(20)

Proof: Let F ‖B‖(x) be the complementary cumulative
distribution function of ‖B‖. Since F ‖B‖(x) ≤ E(‖B‖2)/x2

from Chebyshev’s inequality, then (see [58])

E(‖B‖1‖B‖≥d) = dF ‖B‖(d) +

∫ +∞

d

F ‖B‖(x)dx

≤ E(‖B‖2)

d
+ E(‖B‖2)

∫ +∞

d

dx

x2

=
2E(‖B‖2)

d
Then (20) follows from (17).

Proof of Theorem 1: Let λX,1 ≥ λX,2 ≥ . . . ≥ λX,M
be the eigenvalues of ΣX with the corresponding normalized
eigenvectors vX,1, . . . ,vX,M . Since

ΣYvX,i = ΣXvX,i + σ2vX,i = (λX,i + σ2)vX,i, (21)

each eigenvalue of ΣY equals the sum of an eigenvalue of ΣX

and σ2, and the eigenvectors of ΣX and ΣY are the same.
Under Assumption 1, the last m ≥ m eigenvalues of ΣX are
zeros, therefore, the last m eigenvalues of ΣY equal σ2.

Let J = {M −m+ 1, . . . ,M} be the set of indices of zero
eigenvalues of ΣX. Using Lemma 2 with matrices ΣY and
B, for k ∈ J

E(|λ̃Y,k − σ2|1‖B‖<d) ≤ E
(

max
i∈J

∑
j∈J
|vT

X,iBvX,j |
)

+
4M2

δ
E(‖B‖2). (22)

Consider the first summand on the right side of (22).
Denoting the sample covariance by q, for i, j ∈ J we have

E
(
(vT

X,iBvX,j)
2
)

= var(vT
X,iBvX,j)

= var(vT
X,iSYvX,j)

= var(q(vT
X,iY,vT

X,jY))

= var(q(vT
X,iN,vT

X,jN)) (23)

because E(B) = 0 and vT
X,iX = vT

X,jX = 0. From [56],
[57],

var(q(vT
X,iN,vT

X,jN)) =
E
(
(vT

X,iN)2(vT
X,jN)2

)
N

+
var(vT

X,iN)var(vT
X,jN)

N2 −N

− N − 2

N2 −N
E(vT

X,iN · vT
X,jN)2.

(24)

The entries of N are distributed as N (0, σ2), so that their
variance equals σ2 and the forth moment equals 3σ4. Hence

var(q(vT
X,iN,vT

X,jN)) = O
(σ4

N

)
. (25)

Then, using the matrix norm inequalities and the fact that
E(
√
X) ≤

√
E(X),

E
(

max
i∈J

∑
j∈J
|vT

X,iBvX,j |
)
≤ mE

(√∑
i,j∈J

(vT
X,iBvX,j)2

)
≤ m

√∑
i,j∈J

E
(
(vT

X,iBvX,j)2
)

= O
( σ2

√
N

)
(26)
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from (23) and (25).
Utilizing Lemmas 1 and 4,

E(|λ̃Y,k − σ2|1‖B‖≥d) ≤ E(‖B‖1‖B‖≥d)

= O
(K
N

)
. (27)

In order to get the final result, we should combine bounds
(17), (22), (26), and (27). Since N →∞, 1/N is infinitesimal
compared with 1/

√
N , and

E(|λ̃Y,k − σ2|) =E(|λ̃Y,k − σ2|1‖B‖<d)
+E(|λ̃Y,k − σ2|1‖B‖≥d)

=O
( σ2

√
N

)
+O

(K
N

)
+O

(K
N

)
=O
( σ2

√
N

)
. (28)
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