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ABSTRACT

Noise variance estimation is required in many image denoising, compression, and segmentation applications. In
this work, we propose a fast noise variance estimation algorithm based on principal component analysis of image
blocks. First, we rearrange image blocks into vectors and compute the covariance matrix of these vectors. Then,
we use Bartlett’s test in order to select the covariance matrix eigenvalues, which correspond only to noise. This
allows estimating the noise variance as the average of these eigenvalues. Since the maximum possible number
of eigenvalues corresponding to noise is utilized, it is enough to process only a small number of image blocks,
which allows reduction of the execution time. The blocks to process are selected from image regions with the
smallest variance. During our experiments involving seven state of the art methods, the proposed approach
was significantly faster than the methods with similar or higher accuracy. Meanwhile, the relative error of
our estimator was always less than 15%. We also show that the proposed method can process images without
homogeneous areas.

Keywords: Noise variance estimation, principal component analysis, image denoising, additive white Gaussian
noise

1. INTRODUCTION

We consider images corrupted with additive white Gaussian noise (AWGN), which is the most common noise
model. The noise is characterized by its variance, which is an important parameter for the majority of image
denoising algorithms, because it controls the strength of the filtering. However, the noise variance is often
unknown and should be estimated.

The problem of noise variance estimation was being extensively studied during the last two decades. The
most algorithms assume that the input image contains a sufficient amount of homogeneous areas, which allows
estimating the noise variance as the variance of the input image in these areas. In order to find the homogeneous
areas, high-pass filtering1–8 or preclassification of image blocks9–12 can be applied. Since blocks, which are
classified as homogeneous, can still be affected by image structures, the distribution of the block variances can
contain outliers. Hence robust estimators of the noise variance are utilized,2,3, 13–16 such as the median of block
variances,2 the mode of block variances,14 and the average of several smallest block variances.15,16

There are also methods, which are not based on the analysis of image block variances. In particular, the
noise variance can be estimated using a measure of image bit-plane randomness.17 Under the assumption that
the kurtosis of marginal bandpass filter response distributions is constant for noise-free images, a kurtosis model
for noisy images can be constructed; and the noise variance can be assessed by finding the best parameters of
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this model.18 A Bayesian framework with a learned Markov random field prior can be used for noise variance
estimation as well.19

The signal and the noise can also be separated using the wavelet transform.20–23 When the wavelet coefficients
at the finest decomposition level are used directly,22 the noise variance is significantly overestimated,23 because
image structures affect these coefficients as well. One way to overcome this problem is to estimate the noise level
from the wavelet coefficients smaller than a threshold.20

Recently, more powerful techniques for the signal and noise separation were proposed. All of them assume
that some transform of the noise-free image is sparse. As the noise is uncorrelated and does not allow a sparse
representation, it can be easily separated from the noise-free image in the transform domain. For example, when
discrete cosine transform (DCT) of image blocks24 is applied, image structures define only low frequency trans-
form coefficients, whereas the noise affects all coefficients. Therefore, the noise variance can be estimated from
high frequency transform coefficients. Another transform is based on self-similarity of image blocks: when similar
blocks are combined in 3D stacks and 3D DCT is applied to each stack, image structures occupy only low fre-
quency coefficients, so that the noise variance can be estimated from high frequency coefficients.25 Furthermore,
one can treat image blocks as vectors and make a principal component analysis (PCA) of these vectors.26 In this
case, image structures affect only the largest eigenvalues of the covariance matrix, and the smallest eigenvalue
of the covariance matrix can be used for noise variance estimation.

The common problem of the transform-based methods is low computational efficiency26 compared with the
methods, which use block variances in order to estimate the noise variance. In this work, we propose a fast noise
variance estimation algorithm. Similar to the method,26 our approach utilizes PCA of image blocks, but instead
of using only the smallest covariance matrix eigenvalue, it automatically determines the eigenvalues, which can
be utilized for noise variance estimation. As a result, much smaller amount of image blocks can be used without
significant loss of the accuracy, which leads to a dramatic decrease of the execution time.

The rest of the article is organized as follows. We present the theoretical framework in Subsections 2.1 and
2.2; and the fast implementation is described in Subsections 2.3 and 2.4. The results and the discussion are given
in Sections 3 and 4 respectively. We conclude in Section 5.

2. METHOD

Let S1×S2 be the image size, where S1 is the number of columns and S2 is the number of rows, x be a noise-free
image, and y = x + n be an image corrupted with AWGN n. The problem is to estimate the noise variance σ2.

Suppose that we have N blocks of size B × B in each of images x, n, and y. (The strategy of image block
selection is described in detail in Subsection 2.3.) We treat these blocks as vectors xi, ni, yi, i = 1, . . . , N of size
M = B2, which are realizations of some random variables X, N, and Y respectively.

2.1 Population PCA

Let ΣX, ΣN, and ΣY be the population covariance matrices of X, N, and Y respectively, and λX,1 ≥ · · · ≥ λX,M
be the eigenvalues of ΣX with corresponding normalized eigenvectors vX,1, . . . ,vX,M . Let q1, . . . , qp be the
multiplicities of the eigenvalues of ΣX and

δX,1 = λX,1 = · · · = λX,q1

δX,2 = λX,q1+1 = · · · = λX,q1+q2
...

δX,p = λX,M−qp+1 = · · · = λX,M

where δX,1 > · · · > δX,p. Since the noise-free image and the noise are independent, cov(X,N) = 0 and hence
ΣY = ΣX + ΣN. Furthermore, ΣN = σ2I, because n is AWGN and elements of N are independent. For
i = 1, . . . ,M ,

ΣYvX,i = ΣXvX,i + σ2vX,i = λX,ivX,i + σ2vX,i = (λX,i + σ2)vX,i. (1)



Hence λY,i = λX,i + σ2 are the eigenvalues of ΣY with corresponding eigenvectors vX,i, i = 1, . . . ,M . The
multiplicities of the eigenvalues of ΣX and ΣY are the same and we denote the distinct values of the eigenvalues
of ΣY by δY,1, . . . , δY,p so that

δY,i = δX,i + σ2, i = 1, . . . , p. (2)

vT
X,iY are the population principal components of Y; and their variances var(vT

X,iY) equal λY,i.
27

When δX,p = 0, δY,p equals σ2, which provides a way for noise variance estimation by estimating δY,p from
the realizations of Y. Therefore, we are interested in a class of noise-free images, for which δX,p = 0. This
condition means that X takes its values almost surely in some proper subspace of RM , i.e. in some subspace of
RM whose dimension is smaller than M . It implies that components of X are almost surely linearly dependent,
i.e. there is a linear dependence between pixels of x in the image blocks.

We consider an image with δX,p = 0 in the following example. Let x be a checkerboard image:

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

(3)

Taking B = 2, there are only two possible blocks:

0 1
1 0

and
1 0
0 1

(4)

and two possible values of xi: (0, 1, 1, 0)T and (1, 0, 0, 1)T. Therefore, we can assume that X ∈ R4 takes only
these values. That means, X always lies on the line passing through points (0, 1, 1, 0)T and (1, 0, 0, 1)T, which
is a one-dimensional subspace of R4. Hence ΣX has only one nonzero eigenvalue, p = 2, q2 = 3, and δX,2 = 0.
This example also shows that a noise-free image with zero δX,p does not necessarily contain homogeneous areas
or only low frequencies.

2.2 Sample PCA

In practice, we have only realizations of Y; and population covariance matrix ΣY, as well as its eigenvalues,
cannot be computed. Therefore, analysis of the corresponding sample quantities is required. Let SY be the
sample covariance matrix of Y:

SY =
1

N − 1

( N∑
i=1

yiy
T
i −

1

N

N∑
i=1

yi

N∑
i=1

yT
i

)
. (5)

and λ̃Y,1 ≥ . . . ≥ λ̃Y,M be the eigenvalues of SY. As discussed in the previous subsection, the objective is to

estimate qp and δY,p from λ̃Y,1, . . . , λ̃Y,M .

First, the estimation of qp is required. Let

H0k : λY,M−k+1 = · · · = λY,M (6)

be the hypothesis that the last k eigenvalues of ΣY are equal, and

H1k : λY,M−k+1 > λY,M (7)

be the alternative hypothesis. H0k can be tested against H1k using Bartlett’s test,27,28 in which H0k is rejected
at significance level α if

N ′
(
k ln

(1

k

M∑
i=M−k+1

λ̃Y,i
)
−

M∑
i=M−k+1

ln(λ̃Y,i)
)
≥ χ2

ν,α (8)



Figure 1. 512× 512 ’Cameraman’ image blurred with Gaussian kernel with σ = 2.

where N ′ = N − (2M + 11)/6, χ2
ν,α is the value of the inverse cumulative distribution function of the chi-

squared distribution with ν degrees of freedom at point 1− α, and ν = (k+ 2)(k− 1)/2. Repeating this test for
k = 2, 3, 4, . . . until H0k is rejected allows estimating qp as the maximal k, for which H0k is accepted. We use
α = 0.01.

Second, when qp is known, δY,p can be estimated as the average of the last qp sample eigenvalues:

λ̃Y,M−qp+1 + · · ·+ λ̃Y,M

qp
. (9)

Wielandt’s eigenvalue inequality29 implies that (9) converges to δY,p in probability so that it is a consistent
estimator of δY,p.

Since Bartlett’s test can be used to test the equality of any consecutive eigenvalues,27 the estimation of qi
and δY,i can be continued in the similar way for i = p− 1, . . . , 1. For example, we have computed estimates of qi
and δY,i using 5× 5 blocks for the image shown in Fig. 1. This is the standard test image ’Cameraman’, which
has been blurred in order to remove possible noise. The estimates of qi and δY,i are shown in Table 1; and the
nonzero estimates of δY,i are plotted in Fig. 2. As one can see, all nonzero eigenvalues are distinct and have
approximately exponential decay. The last five eigenvalues equal zero, which means that PCA can be used for
noise variance estimation for this image.

2.3 Image Region Selection

Computation of the estimate of δY,p consists of the following parts:

1. Computation of the sample covariance matrix using (5). The execution time is proportional to NM2.

2. Computation of the eigenvalues of the sample covariance matrix. The execution time is O(M3).30

3. Sequence of Bartlett’s tests (8). The execution time is O(M2).

4. Computation of the estimate of δY,p using (9). The execution time is O(M).



Table 1. The estimates of qi and δY,i for the image shown in Fig. 1. The estimates of δY,i have been computed with the
accuracy 10−4.

i qi δY,i
1 1 87541.0010
2 1 1115.0010
3 1 612.8945
4 1 61.4036
5 1 46.7131
6 1 25.0071
7 1 3.5403
8 1 2.3485
9 1 1.2356
10 1 0.7212
11 1 0.1731
12 1 0.1080
13 1 0.0571
14 1 0.0157
15 1 0.0085
16 1 0.0051
17 1 0.0047
18 1 0.0014
19 1 0.0007
20 1 0.0002
21 5 0.0000
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Figure 2. Semi-logarithmic plot of the nonzero estimates of δY,i for the image shown in Fig. 1.



Typically, N �M , hence the computation of the sample covariance matrix is the most expensive operation.

When one chooses number of image blocks N to be used in sample PCA, there is a trade-off between the
execution time and the accuracy:

1. A large number of blocks leads to accurate estimates, but large execution time, because the execution time
of the sample covariance matrix computation is proportional to the number of blocks.

2. A small number of blocks leads to small execution time, but the results are not statistically significant.

Therefore, we partition the image domain into square regions {Rk} of predefined size T ×T and use image blocks
only from several of these regions. The predefined region size guarantees that there is a sufficient number of
image blocks for accurate noise variance estimation, whereas processing of only a small number of the regions
allows reduction of the execution time. The regions are defined as

Rk = Ri+jK1 =
{

(i− 1)T + 1, . . . , iT
}
×
{

(j − 1)T + 1, . . . , jT
}
, i = 1, . . . ,K1, j = 1, . . . ,K2 (10)

where K1 = bS1/T c and K2 = bS2/T c (recall that S1 × S2 is the image size). Each region Ri+jK1 contains
(T −B + 1)2 blocks of size B ×B with left-top corner positions in set{

(i− 1)T + 1, . . . , iT −B + 1
}
×
{

(j − 1)T + 1, . . . , jT −B + 1
}
. (11)

We use T = 64 in our implementation.

In the ideal case, regions with δX,p = 0 should be selected for processing. However, no information about δX,p
is available before applying PCA, hence some heuristic should be utilized for the region selection. Intuitively,
regions containing simple structures should be taken, which can be described by the region variance, entropy, or
autocorrelation. In our implementation, we use the region variance, because it is fast to compute.

In 8-bit images with gray value range [0, 255], noise clipping usually occurs. Therefore, we skip regions, in
which more than 5% of pixels have the value 0 or 255.

2.4 Algorithm

In our algorithm, we assume that nonzero eigenvalues of ΣX are distinct. This assumption is often used to
select principal components, which are affected only by noise.27 It can be explained by the fact that vector X
represents image structures, and it is very unlikely to have the same variance in different directions, which can
also be seen in Table 1. Therefore, if qp > 1, δX,p is assumed to be zero, δY,p = σ2, and (9) can be used as a
noise variance estimate. If qp = 1, nothing can be said about δX,p.

Our noise variance estimation method is presented in Algorithm 1. First, sample variance s2 of image pixels
is computed for each region Rk. The sample variances are sorted in ascending order, and the sorting result is
stored in permutation π.

In lines 3–20, we try to compute a noise variance estimate using blocks of size B × B. Since the sample
covariance matrix computation time is proportional to NM2 = NB4, we start with small B = Bmin. If our
assumption is satisfied for some B, the algorithm stops (line 19). If the assumption is not satisfied, δX,p may be
nonzero, i.e. X may not lie in some proper subspace of RM . We suppose that if the vector dimension is increased
from M = B2 to M = (B + 1)2, X will lie in some proper subspace of RM and δX,p will be zero. Hence we
increase B in the loop from Bmin to Bmax. If the assumption is not satisfied for any B, we take the estimate
of δY,p computed using the largest B = Bmax as the final estimate (line 13). In this case, the highest number
of dimensions M = B2

max is used to represent image structures so that the estimation error, which is δX,p, is
expected to be the smallest.

In lines 6–16, we process the image blocks from k regions with the smallest variance, namely Rπ(1), . . . , Rπ(k).
Final estimate σ2

est is updated if qp > 1 or if its previous value was not valid (lines 8–16). We start with k = 1, for
which the number of processed image blocks is minimal and, therefore, the chance that δX,p = 0 is the highest.
Then, we increase k in order to process a larger number of blocks and increase the accuracy. k is increased until



Algorithm 1

Input: image y corrupted with AWGN
Output: noise variance estimate σ2

est

1: π ← sort
(
{s2(Rk)}

)
2: for B = Bmin to Bmax do
3: σ2

est ← InvalidValue
4: assumptionIsSatisfied ← false
5: for k = 1 to kmax do
6: λ̃Y,1, . . . , λ̃Y,M ← PCA(Rπ(1), . . . , Rπ(k))
7: Estimate qp using sequence of tests (8)
8: if qp > 1 then
9: σ2

est ← (9)
10: assumptionIsSatisfied ← true
11: else
12: if σ2

est = InvalidValue then
13: σ2

est ← (9)
14: end if
15: break
16: end if
17: end for
18: if assumptionIsSatisfied then
19: break
20: end if
21: end for
22: return σ2

est

qp = 1 (line 15), i.e. until we cannot assume that δX,p = 0. As a result, the enumeration of k allows computation
of the estimate, for which our assumption is satisfied, with the highest possible accuracy.

Note that when calculating (5) for regions Rπ(1), . . . , Rπ(k), Rπ(k+1), we reuse values
∑

yiy
T
i and

∑
yi com-

puted for regions Rπ(1), . . . , Rπ(k) in order to avoid redundant computations.

We use the following algorithm parameters: Bmin = 5, Bmax = 8, kmax = 2.

3. EXPERIMENTS

The proposed method has been evaluated on the TID2008 database,31 which has been already used for testing
noise variance estimation methods.12,25,26 It contains 25 RGB images: 24 real-world scenes and one artificial
image. The noise variance has been estimated in each color component independently, that means, 75 grayscale
images have been used for noise level estimation. The database includes noisy images with the noise variance 65
and 130; and we have additionally generated noisy images with the noise variance 25 and 100. Several images
from this database are shown in Fig. 3.

The noisy images have been computed as the sums of the reference images from the database and realizations
of Gaussian noise with the variance given above (25, 65, 100, or 130). However, the reference images contain
a small level of noise, which should be considered in order to get the true noise variance in the noisy images.
We used estimates σ2

ref of the noise variance in each of the reference images computed by a semi-automatic

procedure;26 and the estimates of the noise variance in the noisy images have been corrected as follows:

σ2
corr = σ2

est − σ2
ref (12)

where σ2
est is the algorithm output.

We have compared our approach with the following recent methods:



Figure 3. Images from the TID2008 database.

1. Pyatykh et al.,26 which takes the smallest eigenvalue of the image block covariance matrix as the noise
variance estimate.

2. Danielyan et al.,25 where self-similarity of image blocks is utilized in order to separate the noise from the
signal.

3. Ponomarenko et al.,24 which applies DCT for signal and noise separation.

4. Yang et al.,6 where a Sobel edge detection operator is used in order to exclude the noise-free image content
and image blocks with the smallest variance are utilized for noise variance estimation.

5. van Zyl Marais et al.,15 where the input image is divided into blocks and the block variances are computed.

6. Barducci et al.,17 which utilizes a measure of bit-plane randomness.

7. Starck et al.,20 where the multiresolution support data structure is used under the assumption that small
wavelet transform coefficients correspond to the noise.

For all methods, we have used only machine code implementations, which allows comparison of the execution
time.

The results of our noise level estimation experiments are presented in Tables 2 and 3. Because the execution
time of the method25 is not provided by the author, we have measured the execution time of the BM3D filter,32

which is a part of the method.25

Compared with the approaches,24–26 the proposed algorithm has approximately the same bias. The estimate
standard deviation and the maximum error of the proposed method are comparable with those of the meth-
ods,24,25 but they are larger than those of the algorithm.26 However, the proposed solution is more than 30
times faster∗ than the algorithms.24–26

Compared with the algorithms,6,15,17,20 our method has more than 2 times smaller bias. The estimate
standard deviation and the maximum error of the proposed algorithm are more than 2 times smaller for the
noise variances 25 and 65 and more than 1.3 times smaller for the noise variances 100 and 130.

∗We assume that the CPU Intel Celeron 1.4 GHz used to measure the performance of the method24 is two times slower
than the CPU Intel i7 920 2.67 GHz used to measure the performance of the other methods.



Table 2. The accuracy of the considered methods for TID2008. σ are the true noise standard deviation values; and σcorr

are the noise standard deviation estimates. σcorr − σ is the bias of corrected estimates, s(σcorr) is the standard deviation
of corrected estimates, max |σcorr − σ| is the maximum difference between a corrected estimate and the true value. The
last column is the percentage of the images, for which a method cannot estimate the noise level. For the methods,24,25

the values of σest have been provided by the authors.

Method σcorr − σ s(σcorr) max |σcorr − σ| % of failures
σ2 = 25 (σ = 5)

proposed 0.026 0.223 0.685 0
Pyatykh et al.26 -0.027 0.147 0.500 0

Danielyan et al.25 -0.039 0.158 0.525 0
Ponomarenko et al.24 − − − −

Yang et al.6 0.322 0.547 2.859 0
van Zyl Marais et al.15 -1.499 1.822 5.000 57.3

Barducci et al.17 3.227 2.266 9.158 0
Starck et al.20 2.144 2.224 8.903 0

σ2 = 65 (σ ≈ 8.062)
proposed 0.021 0.214 0.822 0

Pyatykh et al.26 -0.043 0.103 0.486 0
Danielyan et al.25 − − − −

Ponomarenko et al.24 0.001 0.209 1.078 0
Yang et al.6 0.228 0.430 2.093 0

van Zyl Marais et al.15 -1.467 2.044 8.062 45.3
Barducci et al.17 3.173 1.671 8.968 0
Starck et al.20 2.067 2.325 10.160 0

σ2 = 100 (σ = 10)
proposed 0.052 0.293 1.066 0

Pyatykh et al.26 0.009 0.125 0.307 0
Danielyan et al.25 0.040 0.175 0.717 0

Ponomarenko et al.24 − − − −
Yang et al.6 0.232 0.412 1.935 0

van Zyl Marais et al.15 -1.517 2.145 10.000 42.7
Barducci et al.17 2.204 2.519 9.551 0
Starck et al.20 2.248 1.868 7.281 0

σ2 = 130 (σ ≈ 11.402)
proposed 0.083 0.291 1.062 0

Pyatykh et al.26 0.014 0.110 0.386 0
Danielyan et al.25 − − − −

Ponomarenko et al.24 0.094 0.228 1.170 0
Yang et al.6 0.224 0.390 1.943 0

van Zyl Marais et al.15 -1.467 2.086 6.811 41.3
Barducci et al.17 2.700 2.510 9.604 0
Starck et al.20 2.132 2.279 10.197 0



Table 3. The average execution time of the considered methods. All implementations are single-threaded. For the
method,24 the value have been provided by the authors.

Method Time, ms CPU
proposed 4.1 Intel i7 920 2.67 GHz

Pyatykh et al.26 159 Intel i7 920 2.67 GHz
Danielyan et al.25,32 2628 Intel i7 920 2.67 GHz
Ponomarenko et al.24 ∼ 250 Intel Celeron 1.4 GHz

Yang et al.6 3.1 Intel i7 920 2.67 GHz
van Zyl Marais et al.15 1.1 Intel i7 920 2.67 GHz

Barducci et al.17 123 Intel i7 920 2.67 GHz
Starck et al.20 805 Intel i7 920 2.67 GHz

4. DISCUSSION

The proposed method takes advantage of the redundancy of the information in image blocks, which is done
also by the methods.24–26 Instead of the direct search of similar blocks, which is used in the approach,25

analysis of the block covariance matrix is used in order to find correspondences between the blocks, which is
much more computationally efficient. Compared with image block DCT, which is utilized in the algorithm,24

the transform computed by PCA is not fixed and depends on the input image, which allows processing images
containing textures with high frequencies as shown in the example in Subsection 2.1. In contrast to the method,26

which uses only the smallest covariance matrix eigenvalue for noise variance estimation, the proposed algorithm
automatically computes the number of the eigenvalues which correspond only to the noise, and it utilizes all of
them in order to compute the noise variance estimate. Therefore, a much smaller number of image blocks can
be used, which allows a dramatic reduction of the execution time.

Our algorithm can be extended to 3D images by processing 3D regions of size T ×T ×T and 3D blocks of size
B×B×B. It can also be combined with a variance-stabilizing transformation in order to estimate parameters of
signal-dependent noise.33,34 Besides, it is possible to optimize the proposed algorithm by parallel computation
of the elements of the sample covariance matrix.

5. CONCLUSION

In this work, we present a fast noise variance estimation algorithm, which is based on image block PCA. It provides
a good compromise between the accuracy and the execution time: it is much faster than the methods24–26

and considerably more accurate than the methods.6,15,17,20 Our algorithm does not require the existence of
homogeneous areas in the input image; and it can also handle textures containing high frequencies. The proposed
approach can be used in image denoising, compression and segmentation applications, which take the noise
variance as an input parameter.
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noise estimation in images using local statistics. additive and multiplicative cases,” Image and Vision Com-
puting 27(6), 756–770 (2009).

[15] van Zyl Marais, I. and Steyn, W., “Noise estimation algorithms for onboard image quality assessment,” in
[International Conference on Space Technology ], (2009).

[16] Ghazal, M. and Amer, A., “Homogeneity localization using particle filters with application to noise estima-
tion,” Image Processing, IEEE Transactions on 20(7), 1788–1796 (2011).

[17] Barducci, A., Guzzi, D., Marcoionni, P., and Pippi, I., “Assessing noise amplitude in remotely sensed images
using bit-plane and scatterplot approaches,” Geoscience and Remote Sensing, IEEE Transactions on 45(8),
2665–2675 (2007).

[18] Zoran, D. and Weiss, Y., “Scale invariance and noise in natural images,” in [Computer Vision, 2009 IEEE
12th International Conference on ], 2209–2216, IEEE (2009).

[19] Schmidt, U., Schelten, K., and Roth, S., “Bayesian deblurring with integrated noise estimation,” in [Proc. of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) ], 2625–2632
(2011).

[20] Starck, J. and Murtagh, F., “Automatic noise estimation from the multiresolution support,” Publications
of the Astronomical Society of the Pacific 110, 193–199 (1998).

[21] De Stefano, A., White, P., and Collis, W., “Training methods for image noise level estimation on wavelet
components,” EURASIP Journal on Applied Signal Processing 2004, 2400–2407 (2004).

[22] Donoho, D., “De-noising by soft-thresholding,” Information Theory, IEEE Transactions on 41(3), 613–627
(1995).

[23] Hashemi, M. and Beheshti, S., “Adaptive noise variance estimation in bayesshrink,” Signal Processing
Letters, IEEE 17(1), 12–15 (2010).



[24] Ponomarenko, N., Lukin, V., Zriakhov, M., Kaarna, A., and Astola, J., “An automatic approach to lossy
compression of aviris images,” in [Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE
International ], 472–475, IEEE (2007).

[25] Danielyan, A. and Foi, A., “Noise variance estimation in nonlocal transform domain,” in [Local and Non-
Local Approximation in Image Processing, 2009. LNLA 2009. International Workshop on ], 41–45, IEEE
(2009).

[26] Pyatykh, S., Hesser, J., and Zheng, L., “Image noise level estimation by principal component analysis,”
Image Processing, IEEE Transactions on 22, 687–699 (Feb. 2013).

[27] Jolliffe, I., “Principal component analysis,” Encyclopedia of Statistics in Behavioral Science (2002).

[28] Bartlett, M., “Tests of significance in factor analysis,” British Journal of Statistical Psychology 3(2), 77–85
(1950).

[29] Eaton, M. and Tyler, D., “On wielandt’s inequality and its application to the asymptotic distribution of
the eigenvalues of a random symmetric matrix,” The Annals of Statistics 19(1), 260–271 (1991).

[30] Prass, W., [Numerical recipes: the art of scientific computing ], Cambridge University Press (2007).

[31] Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., and Battisti, F., “Tid2008 - a
database for evaluation of full-reference visual quality assessment metrics,” Advances of Modern Radio-
electronics 10(4), 30–45 (2009).

[32] Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K., “Image denoising by sparse 3-d transform-domain
collaborative filtering,” Image Processing, IEEE Transactions on 16(8), 2080–2095 (2007).

[33] Foi, A., “Noise estimation and removal in mr imaging: The variance-stabilization approach,” in [Biomedical
Imaging: From Nano to Macro, 2011 IEEE International Symposium on ], 1809–1814, IEEE (2011).

[34] Oktem, R., Egiazarian, K., Lukin, V., Ponomarenko, N., and Tsymbal, O., “Locally adaptive dct filtering
for signal-dependent noise removal,” EURASIP Journal on Advances in Signal Processing 2007, 10 (2007).


